ASX Announcement

4 December 2019

GILMOUR AND RENEGADE MINERAL

RESOURCE

Mid‐tier gold producer and exploration company Gold Road Resources Limited (Gold Road) reports the first 100% company‐owned resource addition since the Gruyere Joint Venture (Gruyere JV). The Mineral Resource of 3.5 million tonnes at 2.62 g/t Au for 297,600 ounces1 was estimated using an A$1,850 per ounce gold price assumption.

Highlights

  • New 297,600 ounce Mineral Resources at Gilmour and Renegade 100% owned by Gold Road
  • Gilmour Maiden Mineral Resource of 2.6 Mt at 3.09 g/t Au for 258,400 ounces:
    • Open pit: 1.8 Mt at 2.21 g/t Au for 129,100 ounces
    • Underground: 0.8 Mt at 5.13 g/t Au for 129,300 ounces
    • 120,000 ounces at 5.2 g/t Au (46%) of the Mineral Resource categorised as Indicated
    • Mineralisation is dominated by a continuous laminated vein with coarse gold drilled to 400 metres below surface
    • Initial metallurgical test‐work indicates potential recoveries ranging from 89% to 99% with 28% to 82% of the gold recovered by gravity separation2
  • Renegade3 open pit Inferred Mineral Resource of 0.9 Mt at 1.3 g/t Au for 39,200 ounces
  • Total attributable Mineral Resource now 3.6 Million ounces (100% Gold Road and 50% Gruyere JV)

ASX Code GOR

ABN 13 109 289 527

COMPANY DIRECTORS

Tim Netscher

Chairman

Duncan Gibbs

Managing Director & CEO

Justin Osborne

Executive Director,

Discovery & Growth

Brian Levet

Non-Executive Director

Sharon Warburton

Non-Executive Director

Carol Marinkovich

Company Secretary

CONTACT DETAILS

Principal & Registered Office Level 2, 26 Colin St

West Perth WA 6005

www.goldroad.com.au

perth@goldroad.com.au

T +61 8 9200 1600

F +61 8 9481 6405

  • Gilmour and Renegade Mineral Resources have, subject to further studies, potential development flexibility, either as part of future standalone operations, contingent on further discoveries, or they could be developed and processed at Gruyere via toll treatment provisions under the Gruyere JV agreement

Gold Road Executive Director ‐ Exploration & Growth Justin Osborne commented: "The Maiden Mineral Resource for Gilmour represents the first gold deposit identified at Yamarna outside of the original discoveries on the Golden Highway, and our Gruyere discovery which is now being mined in Joint Venture with Gold Fields. The significance in being the third largest, and second highest grade deposit so far discovered at Yamarna is considerable. The relatively high‐grade demonstrates a diverse endowment consistent with our belief in the Belt having potential to host multiple deposits varying in style, size and grade as seen in other major Greenstone Belts in Western Australia ‐ the main difference at Yamarna is it remains significantly underexplored. We are now applying the improved understanding from our Gilmour exploration programme to assist our ongoing targeting of >1 million ounce deposits on the considerable Yamarna tenement holding."

  • All Open Pit Mineral Resources are reported at various cut‐off grades allowing for processing costs, recovery and haulage to the Gruyere Mill. Renegade ‐ 0.5 g/t Au, Gilmour ‐ 0.5 g/t Au. All Open Pit Mineral Resources are constrained within an A$1,850 per ounce optimised pit shell derived from mining, processing and geotechnical parameters from PFS and operational studies. Underground Mineral Resources at Gilmour are constrained by 2.5 metre minimum stope width that is optimised to a 3.5 g/t Au cut‐off reflective of an A$1,850 per ounce gold price. Diluted tonnages and grades are reported based on minimum stope widths.
    2 Refer ASX announcement dated 28 May 2019
    3 Renegade (previously Khan North) was removed from Mineral Resources in 2015 ‐ refer ASX announcement dated 16 September 2015

Figure 1: Yamarna tenement plan with Ore Reserves (total Proved and Probable) and Mineral Resources (total Measured, Indicated and Inferred) reported and the addition of Gilmour and Renegade as 100% Gold Road deposits as at November 2019. Deposits as part of the Gruyere JV with Gold Fields are unchanged from December 2018

Page 2 of 53

Mineral Resource Summary

The Gold Road 100% owned Mineral Resource totals 3.5 million tonnes at 2.62 g/t Au for 297,600 ounces (Table 1 and Figure 1) and is constrained within optimised pit shells and underground stope shapes, based on an A$1,850 per ounce gold price assumption with deposit‐specific modifying factors and cut‐off grades. In addition to an Attributable Mineral Resource from the Gruyere JV of 3.31 Million ounces, Gold Road now has a total Attributable Mineral Resource of 81.2 million tonnes at 1.38 g/t Au for 3.6 Million ounces. Commercial production from Gruyere was achieved in September 2019 in joint venture with partners Gold Fields.

The Gilmour Maiden Mineral Resource (Figure 2), and a new Renegade Mineral Resource, represent the first 100% company‐owned resource additions since entering the Gruyere JV in November 2016.

Table 1: Mineral Resource at November 2019 (total Measured, Indicated and Inferred categories)

Mineral Resource ‐ November 2019

Tonnes

Grade

Contained

Project Name

Metal

(Mt)

(g/t Au)

(Moz Au)

Gruyere JV

Gruyere

139.56

1.29

5.78

YAM14

0.85

1.21

0.03

Central Bore

0.24

13.05

0.10

Golden Highway Total

14.72

1.47

0.70

Total Gruyere JV 100% Basis

155.37

1.32

6.61

Total Gold Road 50% Attributable

77.69

1.32

3.31

Gold Road

Renegade

0.93

1.30

0.04

Gilmour OP

1.82

2.21

0.13

Gilmour UG

0.78

5.13

0.13

Total Gold Road 100% Owned

3.53

2.62

0.30

Gold Road Attributable

Total Gold Road

81.22

1.38

3.60

Notes:

  • All Mineral Resources are completed in accordance with the JORC Code 2012 Edition
  • All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
  • Mineral Resources are inclusive of Ore Reserves
  • The Gruyere Project JV is a 50:50 joint venture between Gold Road and Gruyere Mining Company Pty Ltd, a wholly owned Australian subsidiary of Gold Fields Ltd. Figures are reported on a 100% basis unless otherwise specified, 50% is attributable to Gold Road
  • All Open Pit Mineral Resources are reported at various cut‐off grades allowing for processing costs, recovery and haulage to the Gruyere Mill. Gruyere ‐ 0.30 g/t Au. Attila, Argos, Montagne, Orleans, and Alaric ‐ 0.50 g/t Au. YAM14 ‐ 0.40 g/t Au. Gilmour ‐ 0.05 g/t Au. Renegade ‐ 0.50 g/t Au
  • All Open Pit Mineral Resources are constrained within an A$1,850/oz optimised pit shell derived from mining, processing and geotechnical parameters from PFS and ongoing operational studies
  • Underground Mineral Resources at Central Bore and Gilmour are constrained by 1.5 metre and 2.5 metre minimum stope widths respectively that are optimised to a 3.50 g/t Au cut‐off reflective of an A$1,850/oz gold price. Diluted tonnages and grades are reported based on minimum stope widths
  • All dollar amounts are in Australian dollars unless otherwise stated

Page 3 of 53

Gilmour Maiden Mineral Resource

Following the discovery of Gruyere in 2013, Gold Road continued to systematically explore its Yamarna tenement holding while progressing the development of the Gruyere Project. Gilmour was targeted successfully with aircore drilling in late 2015. Follow‐up bedrock drilling intersected primary shear‐hosted gold mineralisation in late 2017, followed by framework definition drilling in 2018 and resource drilling in the first half of calendar 2019.

Geological analysis and interpretation defined a continuous and predictable high‐grade mineralised system over a 500 metre strike and dip extent. Gold is predominantly associated with a laminated quartz vein 0.5 to 2 metres in width that dips moderate to steeply northeast. Gold grades range from 0.5 to 117.8 g/t Au (averaging 11.5 g/t Au). The mineralisation is bounded by faults to the north and south and narrows at depth (Figure 2). The high‐grade, brittle nature of the mineralising system at Gilmour is notably different from other defined zones of mineralisation along the Yamarna Shear Zone, such as the Golden Highway deposits, which display a more ductile style and are uniformly lower grade.

Figure 2: Gilmour deposit longitudinal projection (looking southwest) illustrating geology and resource categories and

November 2019 Mineral Resource constraining pit shell and stope outlines

Preliminary metallurgical test‐work indicates potential recoveries ranging from 89% to 99% with between 28% to 82% of the gold recovered by gravity separation.

The Gilmour Maiden Mineral Resource is reported within constraining open pit optimisation shells and underground stope optimisations, reflecting potential economic extraction methods. The open pit portion of the resource has been modelled to a 2 metre mining width and reported within an A$1,850 Lerch‐Grossman pit optimisation with assumed pit slopes and costs commensurate with an appropriate scale of mining, and processing at the Gruyere Mine. The underground portion of the resource is reported below the A$1,850 open pit optimisation. A 2.5 metre minimum mining width has been utilised for the underground resource estimate and the underground component of the Mineral Resource of 0.8 Mt at 5.13 g/t Au for 129,300 ounces incorporates the resulting diluted tonnage and grade.

Page 4 of 53

The Gilmour Maiden Mineral Resource totals 2.6 Mt at 3.09 g/t Au for 258,400 ounces, with 0.8 Mt at 5.2 g/t Au for 120,000 ounces, or 46% of contained ounces, classified as an Indicated Resource. This makes Gilmour the third largest and second highest grade deposit so far discovered on the Yamarna Belt.

The Gilmour Maiden Mineral Resource is located 55 kilometres, by road, south of the Gruyere Mine (Figure 1). The open pit and underground Mineral Resources could be developed by Gold Road and processed at Gruyere via toll treatment provisions under the Gruyere JV agreement. The Gruyere development option provides a pathway to monetise the discovery and realise value from Gold Road's exploration programme.

Gold Road is continuing systematic Greenfields exploration at Yamarna, focussed predominantly in the Southern Project Area, with the strategic objective of delivering sufficient discoveries to realise greater shareholder value via a standalone operation. Consideration of the development of Gilmour and associated feasibility studies will therefore be deferred until the gold endowment of the Southern Project Area is demonstrated by further exploration.

Further details regarding the Gilmour Maiden Mineral Resource can be found in Appendix 1 ‐ Material Information Summaries.

Renegade Mineral Resource

The Renegade deposit, previously reported as Khan North, has been re‐estimated as a Mineral Resource of 0.9 Mt at 1.3 g/t Au for 39,200 ounces. The new resource estimate follows detailed geological interpretation and optimisation for open pit extraction, applying appropriate modifying factors and a gold price assumption of A$1,850 per ounce. The Renegade Mineral Resource is classified in the Inferred category (Figure 3).

Gold mineralisation at Renegade is hosted in a felsic porphyry (the Renegade Porphyry) 10 kilometres along strike to the north of the Golden Highway deposits. The bulk of the gold mineralisation at Renegade occurs in a high‐grade shear zone that changes strike in response to a northwest to southeast striking cross fault.

Renegade is located 35 kilometres by road from the Gruyere Mill, and is adjacent to the Gruyere Main Access Road (Figure 1). Renegade could potentially add value to Gold Road through toll treatment in accordance with the terms of the Gruyere JV agreement.

Further details regarding the Renegade Mineral Resource can be found in Appendix 1 ‐ Material Information Summaries.

Page 5 of 53

Figure 3: Renegade deposit longitudinal projection (looking east) showing resource categories and November 2019 Mineral Resource

constraining pit shell. The resource is hosted within a felsic porphyry of similar composition to the Gruyere Porphyry

JORC Code 2012 Edition and ASX Listing Rules Requirement

Mineral Resources are reported according to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code 2012 Edition), Chapter 5 of the ASX Listing Rules and ASX Guidance Note 31.

Material Information Summaries for each of the contributors to this Mineral Resource Statement are provided in accordance with ASX Listing Rules 5.8 and 5.9 and the Assessment and Reporting Criteria, and JORC Code 2012 Edition requirements. These summaries can be found in Appendix 1 below.

The Gilmour and Renegade Mineral Resources were compiled and reviewed by Gold Road Competent Persons. All Mineral Resources were subject to internal formal peer review and validation.

This release is authorised by the Board of Directors.

For further information, please visit www.goldroad.com.au or contact:

Gold Road Resources

Media Enquiries - Cannings Purple

Duncan Hughes, Manager - Corporate Development &

Warrick Hazeldine or Peter Klinger

Investor Relations

whazeldine@canningspurple.com.au

Tel: +61 8 9200 1600

pklinger@canningspurple.com.au

Tel: +61 417 944 616 or +61 411 251 540

Page 6 of 53

About Gold Road

Gold Road Resources Limited is a mid‐tier Australian gold producer with Tier 1 mine and exploration projects in the underexplored and highly prospective Yamarna Greenstone Belt in Western Australia's north‐eastern Goldfields.

Gold Road owns 50% of the world‐class Gruyere gold mine, which was developed in Joint Venture with Gold Fields Ltd (JSE: GFI) and produced first gold in June 2019. Gruyere is forecast to produce on average 300,000 ounces (100% basis) annually for at least 12 years, making it one of Australia's largest and lowest‐cost gold mining operations. Gruyere has Mineral Resources of 5.8 million ounces, including an Ore Reserve of 3.6 million ounces.

Gold Road discovered the world‐class Gruyere deposit in 2013 as part of its pioneering exploration across Yamarna and entered into the Gruyere Gold Project Joint Venture with Gold Fields in 2016. The Gruyere JV includes 144 square kilometres of the Yamarna Belt.

In addition to the Gruyere JV, Gold Road controls 100% of tenements covering >5,000 square kilometres across Yamarna with a Mineral Resource of 0.3 million ounces. Gold Road is executing an industry leading exploration strategy to discover the next multi‐million‐ounce gold deposits at Yamarna.

Gold Road also continues to assess and pursue

other shareholder wealth‐creating opportunities, such as its exploration farm‐in Joint Venture with Cygnus Gold Limited (ASX: CY5) in Western Australia's South West, and Project Generation more widely.

Gold Road uses a staged Project Pipeline approach to manage, prioritise and measure success of the exploration portfolio. Each target is classified by Milestone and ranked using geological and economic criteria. Regular peer review, prioritisation and strategy ensure that the highest quality projects are progressed across all stages of exploration.

tenements and Gold Road‐Gold Fields Gruyere JV tenements (yellow outline), Mineral Resources, Ore Reserves (100% basis) and selected exploration prospects

Exploration Project Pipeline and Milestones used by Gold Road for managing exploration success

Page 7 of 53

Mineral Resource Estimate - November 2019

Gruyere Project Joint Venture ‐ 100% basis

Gold Road Attributable

Tonnes

Grade

Contained

Tonnes

Grade

Contained

Project Name / Category

Metal

Metal

(Mt)

(g/t Au)

(Moz Au)

(Mt)

(g/t Au)

(Moz Au)

Gruyere Total

139.56

1.29

5.78

69.78

1.29

2.89

Measured

16.44

1.17

0.62

8.22

1.17

0.31

Indicated

88.53

1.30

3.71

44.26

1.30

1.85

Measured and Indicated

104.97

1.28

4.32

52.49

1.28

2.16

Inferred

34.59

1.31

1.46

17.30

1.31

0.73

Golden Highway + YAM14 Total

15.57

1.46

0.73

7.78

1.46

0.36

Measured

0.29

1.99

0.02

0.14

1.99

0.01

Indicated

11.33

1.48

0.54

5.67

1.48

0.27

Measured and Indicated

11.62

1.50

0.56

5.81

1.50

0.28

Inferred

3.95

1.33

0.17

1.98

1.33

0.08

Central Bore

0.24

13.05

0.10

0.12

13.05

0.05

Measured

Indicated

Measured and Indicated

Inferred

0.24

13.05

0.10

0.12

13.05

0.05

Total Gruyere JV

155.37

1.32

6.61

77.69

1.32

3.31

Measured

16.73

1.18

0.64

8.37

1.18

0.32

Indicated

99.86

1.32

4.25

49.93

1.32

2.12

Measured and Indicated

116.59

1.30

4.88

58.29

1.30

2.44

Inferred

38.78

1.39

1.73

19.39

1.39

0.86

Renegade

0.93

1.30

0.04

Measured

Indicated

Measured and Indicated

Inferred

0.93

1.30

0.04

Gilmour OP

1.82

2.21

0.13

Measured

Indicated

0.42

5.81

0.08

Measured and Indicated

0.42

5.81

0.08

Inferred

1.40

1.13

0.05

Gilmour UG

0.78

5.13

0.13

Measured

Indicated

0.30

4.33

0.04

Measured and Indicated

0.30

4.33

0.04

Inferred

0.49

5.62

0.09

Total Gold Road 100% Owned

3.53

2.62

0.30

Measured

Indicated

0.72

5.20

0.12

Measured and Indicated

0.72

5.20

0.12

Inferred

2.82

1.96

0.18

Total Gold Road Attributable

81.22

1.38

3.60

Measured

8.37

1.18

0.32

Indicated

50.65

1.38

2.24

Measured and Indicated

59.01

1.35

2.56

Inferred

22.21

1.46

1.04

Page 8 of 53

Ore Reserve Estimate ‐ December 2018

Gruyere Joint Venture ‐ 100% basis

Gold Road Attributable

Tonnes

Grade

Contained

Tonnes

Grade

Contained

Project Name / Category

Metal

Metal

(Mt)

(g/t Au)

(Moz Au)

(Mt)

(g/t Au)

(Moz Au)

Gruyere Total

90.65

1.24

3.61

45.33

1.24

1.80

Proved

16.84

1.11

0.60

8.42

1.11

0.30

Probable

73.81

1.27

3.01

36.91

1.27

1.50

Golden Highway Total

6.54

1.46

0.31

3.27

1.46

0.15

Proved

0.32

1.67

0.02

0.16

1.67

0.01

Probable

6.22

1.45

0.29

3.11

1.45

0.15

Total Gruyere JV

97.20

1.25

3.92

48.60

1.25

1.96

Proved

17.16

1.13

0.62

8.58

1.13

0.31

Probable

80.03

1.28

3.30

40.02

1.28

1.65

Notes:

  • Gruyere JV Mineral Resources and Ore Reserves remain unchanged from December 2018
  • All Mineral Resources and Ore Reserves are completed in accordance with the JORC Code 2012 Edition
  • All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
  • Mineral Resources are inclusive of Ore Reserves
  • The Gruyere JV is a 50:50 joint venture between Gold Road and Gruyere Mining Company Pty Ltd, a wholly owned Australian subsidiary of Gold Fields Ltd. Figures are reported on a 100% basis unless otherwise specified
  • Gold Road holds an uncapped 1.5% net smelter return royalty on Gold Fields' share of production from the Gruyere JV once total gold production from the Gruyere JV exceeds 2 million ounces
  • All Open Pit Mineral Resources are reported at various cut‐off grades allowing for processing costs, recovery and haulage to the Gruyere Mill. Gruyere ‐ 0.30 g/t Au. Attila, Argos, Montagne, Orleans, and Alaric - 0.50 g/t Au. YAM14 - 0.40 g/t Au. Gilmour ‐ 0.50 g/t Au. Renegade ‐
    1. g/t Au. All Open Pit Mineral Resources are constrained within a $1,850/oz optimised pit shell derived from mining, processing and geotechnical parameters from PFS and operational studies. Underground Mineral Resources at Central Bore and Gilmour are constrained by
    1. metre and 2.5 metre minimum stope widths respectively that are optimised to a 3.50 g/t Au cut‐off reflective of an $1,850/oz gold price. Diluted tonnages and grades are reported based on minimum stope widths
  • The Ore Reserves are constrained within a $1,600/oz mine design derived from mining, processing and geotechnical parameters as defined by Pre‐feasibility Studies and operational studies. The Ore Reserves are evaluated using variable cut‐off grades: Gruyere ‐ 0.30 g/t Au. Attila ‐ 0.65 g/t Au (fresh), 0.58 g/t Au (transition), 0.53 g/t Au (oxide). Alaric ‐ 0.59 g/t Au (fresh), 0.56 g/t Au (transition), 0.53 g/t Au (oxide), Montagne - 0.64 g/t Au (fresh), 0.60 g/t Au (transition), 0.58 g/t Au (oxide), Argos - 0.66 g/t Au (fresh), 0.64 g/t Au (transition), 0.59 g/t Au (oxide). Ore block tonnage dilution averages and gold loss estimates: Gruyere - 4.9% and 0.4%. Attila ‐ 14% and 3%. Alaric ‐ 20% and 6%. Montagne - 9% and 7%. Argos 10% and 12%
  • All dollar amounts are in Australian dollars

Page 9 of 53

Competent Persons Statements

Exploration Results

The information in this report which relates to Exploration Results is based on information compiled by Mr Justin Osborne, Executive Director ‐ Discovery and Growth for Gold Road. Mr Osborne is an employee of Gold Road, and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of Performance Rights. Mr Osborne has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Osborne consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

Mineral Resources

The information in this report that relates to the Mineral Resource estimation for Gruyere is based on information compiled by Mr Mark Roux. Mr Roux is an employee of Gold Fields Australia, is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 324099) and is registered as a Professional Natural Scientist (400136/09) with the South African Council for Natural Scientific Professions. Mr Justin Osborne, Executive Director ‐ Discovery and Growth for Gold Road and Mr John Donaldson, General Manager Geology for Gold Road have endorsed the Mineral Resource for Gruyere on behalf of Gold Road.

  • Mr Osborne is an employee of Gold Road and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of Performance Rights.
  • Mr Donaldson is an employee of Gold Road and a Member of the Australian Institute of Geoscientists and a Registered Professional Geoscientist (MAIG RPGeo Mining 10147). Mr Donaldson is a shareholder and a holder of Performance Rights.

The information in this report that relates to the Mineral Resource estimation for Attila, Orleans, Argos, Montagne, Alaric, YAM14, Central Bore, Gilmour and Renegade is based on information compiled by Mr Justin Osborne, Executive Director ‐ Discovery and Growth for Gold Road, Mr John Donaldson, General Manager Geology for Gold Road and Mrs Jane Levett, Principal Resource Geologist for Gold Road.

  • Mrs Levett is an employee of Gold Road and is a Member of the Australasian Institute of Mining and Metallurgy and a Chartered Professional (MAusIMM CP 112232).

Messrs Roux, Osborne and Donaldson and Mrs Levett have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Messrs Roux, Osborne and Donaldson and Mrs Levett consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Ore Reserves

The information in this report that relates to the Ore Reserve estimation for Gruyere is based on information compiled by Mr Daniel Worthy. Mr Worthy was an employee of Gruyere Mining Company Pty Ltd and a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 208354). Mr Max Sheppard, Principal Mining Engineer for Gold Road has endorsed the Ore Reserve estimation for Gruyere on behalf of Gold Road.

  • Mr Sheppard is an employee of Gold Road and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 106864).

The information in this report that relates to the Ore Reserve estimation for Attila, Argos, Montagne and Alaric, is based on information compiled by Mr Max Sheppard, Principal Mining Engineer for Gold Road.

Mr Worthy and Mr Sheppard have sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Worthy and Mr Sheppard consent to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

New Information or Data

Gold Road confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.

Page 10 of 53

Appendix 1 - Material Information Summaries

Contents

Regional Geological Setting ...................................................................................................................................

12

Gilmour Maiden Mineral Resource .......................................................................................................................

13

Renegade Mineral Resource..................................................................................................................................

23

Page 11 of 53

Regional Geological Setting

The Gilmour and Renegade deposits are located within the Yamarna Terrane which forms the eastern most terrane of the Archaean Yilgarn Craton. The Yamarna Terrane comprises two main north‐northwest trending greenstone belts, the Yamarna Greenstone Belt (YGB) to the west and the Dorothy Hills Greenstone Belt (DHGB) to the east. The east‐ dipping listric Yamarna Shear Zone forms the western boundary of the Yamarna Terrane and separates it from the Burtville Terrane to the west. The greenstone belts have undergone greenschist to amphibolite facies metamorphism and are bound and separated by Archaean metagranitic plutons.

The YGB has a strike length of at least 200 kilometres and varies from 3 to 30 kilometres in width. The adjacent DHGB has a strike length of at least 90 kilometres and ranges from 3 to 12 kilometres in width. Recent geochronological dating and regional interpretation has divided the greenstone belts into distinct structurally bound tectonostratigraphic groups. The YGB comprises the Grevillea, Stock Route, Toppin Hill, St Andrews and Corkwood tectonostratigraphic groups, and the DHGB currently forms its own tectonostratigraphic sequence (Figure 1). The greenstone belts comprise Archaean basinal sequences of volcanics and volcanosedimentary rocks of mafic, andesitic and dacitic affiliation. The greenstone belt is intruded by variably deformed early and late granitoid sills and plutons, felsic to intermediate porphyry dykes and dolerite sills.

Residual soils and subcrop are limited and confined to the central parts of the YGB and minor parts of the northern DHGB. The northern and southern extents of the YGB and most of the DHGB are under variable thicknesses of Quaternary aeolian sands, Cenozoic sands and lacustrine clays, and glacial deposits of the Permian Paterson Formation.

Orogenic gold mineralisation has been identified on both the YGB and DHGB. The Gruyere deposit and gold mine is located in the DHGB and hosted within the regional‐scale Dorothy Hills Shear Zone. Several north‐northwest trending zones of gold mineralisation have been identified in the YGB. The most extensive of these is the Golden Highway Shear Zone that runs the length of the western side of the belt and hosts the Attila‐Alaric group of deposits. The Gilmour and Renegade deposits are both situated along the interpreted strike extensions of the Golden Highway Shear Zone. Total Mineral Resource currently defined on the YGB and DHGB are in excess of 6.9 million ounces.

Figure 1: Tectonostratigraphic Map (left hand side) and regional stratigraphy of the Gilmour and Renegade Deposit areas

Page 12 of 53

Gilmour Maiden Mineral Resource

The Gilmour Maiden Mineral Resource represents the first 100% company owned resource addition since commencing the Gruyere Joint Venture in November 2016. The Gilmour Maiden Mineral Resource has been extensively reviewed internally and has been completed in accordance with the guidelines set out in the JORC Code

2012 Edition. The resource is estimated in two parts:

  • an Open Pit Mineral Resource constrained within an A$1,850 per ounce optimised pit shell reported above a
    1. g/t Au cut‐off grade; and
  • an Underground Mineral Resource constrained within a 2.5 metre minimum stope width that is optimised to a
    1. g/t Au cut‐off reflective of an A$1,850 per ounce gold price, resulting diluted tonnage and grade is reported.

The Maiden Mineral Resource totals 2,598,000 tonnes at 3.09 g/t Au for a total of 258,400 ounces of gold (Table 1 and Figure 1). This includes a Total Indicated Resource of 717,900 tonnes at 5.20 for 120,000 ounces, comprising 46% of the Mineral Resource.

Table 1: Summary of the November 2019 Gilmour Maiden Mineral Resource

Gilmour Maiden Mineral Resource ‐ November 2019

Project Name / Category

Tonnes

Grade

Contained Metal

(t)

(g/t Au)

(oz Au)

Gilmour OP

1,815,300

2.21

129,100

Measured

Indicated

419,700

5.81

78,400

Measured and Indicated

419,700

5.81

78,400

Inferred

1,395,600

1.13

50,700

Gilmour UG

783,200

5.13

129,300

Measured

Indicated

298,200

4.33

41,600

Measured and Indicated

298,200

4.33

41,600

Inferred

485,000

5.62

87,700

Total

2,598,500

3.09

258,400

Measured

Indicated

717,900

5.20

120,000

Measured and Indicated

717,900

5.20

120,000

Inferred

1,880,600

2.29

138,400

Notes:

  • The Maiden Mineral Resource is completed in accordance with the JORC Code 2012 Edition
  • All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
  • Open Pit Mineral Resource constrained within an A$1,850/oz optimised pit shell and reported at a 0.50 g/t Au cut‐off
  • Underground Mineral Resource constrained by 2.5 metre minimum stope width optimised to a 3.50 g/t Au cut‐off reflective of an A$1,850/oz gold price. Diluted tonnages and grades are reported based on minimum stope widths
  • Mining, haulage, processing and geotechnical parameters for evaluation were derived from PFS and ongoing operational planning studies
  • All dollar amounts are in Australian dollars unless otherwise stated

Project History

Gilmour was first targeted in late 2015, following interpretation of faulted offsets of the southern continuation of the Yamarna Shear Zone in the Wanderrie Camp area. Early stage geochemical testing of the target via aircore drilling was completed in 2016 and follow‐up bedrock drilling returned positive mineralised intersections in late 2017. Further drill testing was completed in 2018, and in early 2019 drill spacing was closed up to a 50 mX by 50 mY grid appropriate to classify Indicated resources. A total of 16,728 metres, comprising 12,546 metres Reverse Circulation (RC) and 4,182 metres diamond were utilised to inform this Maiden Mineral Resource.

Page 13 of 53

Deposit Geology

Geology and Geological Interpretation

The Gilmour deposit is located in the central‐western part of the YGB within the Wanderrie Camp Scale Target in the Toppin Hill tectonostratigraphic group (Figure 1). Gilmour is a member of the Supergroup Trend, the southern extension of the second order Golden Highway Shear Zone that hosts the Attila‐Alaric group of deposits (0.7 million ounces). The bulk of the gold mineralisation is hosted within an east‐dipping laminated quartz vein constrained by the Waters Fault to the north and Pink Fault to the south (Figures 2, 3 and 4). A summary description of the interpreted geology and main geological controls follows:

  1. Gold mineralisation at Gilmour is hosted in the lower part of a highly strained moderately east‐dipping matrix supported polymictic conglomerate sequence. The conglomerate forms the basal unit of the Toppin Hill Mid Conglomerate Formation, which also includes zones of well bedded sandstones, volcaniclastics and interbedded shales having increased mafic derived content identified by the presence of garnet porphyroblasts and amphibole. The Toppin Hill Mid Conglomerate is conformably underlain by the Toppin Hill Lower Sandstone Formation dominated by a coarse quartz‐feldspar grit interpreted to be a felsic volcaniclastic.
  2. The stratigraphy in the Gilmour area has been affected by early ductile deformation and by several later normal brittle events. The sedimentary sequence has undergone significant layer parallel shortening with no discernible consistent kinematic indicator. Shortening is evidenced by flattened conglomerate pebbles and cobbles, and strongly folded quartz veins where veins cross‐cut bedding.
  3. The Waters Fault is an east‐west trending (bearing 240°) normal fault with a down thrown northern block. This structure is part of a regional scale long lived east‐west striking fault complex that includes the Rocha Fault to the north. Bedding and veining have been dragged into the Waters Fault from a consistent shallow easterly dip to a steeply north‐east dipping orientation. The fault zone displays evidence of Archaean and Proterozoic displacement and brecciation, and is intruded by xenolithic Proterozoic Dykes.
  4. The bulk of the Gilmour mineralisation is hosted in a continuous high‐grade laminated quartz vein (Figure 5) that is conformable to stratigraphy and located at the base of, or immediately below a more mafic interbed within the polymictic conglomerate. The laminated vein ranges from 0.5 metres wide to 2.0 metres wide and can be as thin as 0.2 metres away from the constrained resource down dip and along strike. Additional thin laminated veins present in the footwall (footwall vein) and hangingwall do not display the continuity or thickness of the main laminated vein. A population of thin folded laminated veins occur primarily in the hangingwall to the main laminated vein which originally crosscut the bedding and have been subsequently folded during the layer parallel shortening event.
  5. North of the Waters Fault the gold mineralisation is offset approximately 700 metres west and is of reduced tenor manifesting as a sulphidised shear within the Toppin Hill Lower Sandstone formation. It is interpreted that the Waters Fault played an integral part in generating dilation during episodic deformation resulting in formation of the laminated quartz vein and limiting the northern extent of economic mineralisation. The Pink Fault, which displays an apparent dextral offset to stratigraphy and mineralisation, controls the southern extent of well‐developed laminated veining, although mineralisation does continue beyond this fault which will be explored in 2020.
  6. Proximal alteration (proximal halo) to the mineralised veining comprises a muscovite + pyrite ± albite ± biotite assemblage. Alteration is generally constrained to only a few to 10's of centimetres either side of vein margins but can be up to 5 metres wide locally.

Page 14 of 53

Figure 2: Plan illustrating simplified geology and November 2019 Mineral Resource constraining pit shell and stope outlines

Regolith and Weathering

The Gilmour deposit is overlain by glacial deposits of the Permian Paterson Formation, and Quaternary and Cenozoic sands. In small areas of the deposit, a pisolitic laterite duricrust has formed. This sequence of transported cover varies in depth from 10 to 25 metres in thickness.

The Archean basement is weathered to a depth of 80 to 90 metres below surface, increasing to greater than 100 metres in areas of fault complexity associated with the Waters Fault Zone. The regolith profile is generally stripped to the deeply weathered upper saprolite zone, which is depleted of gold due to leaching and forms the upper domain boundary to mineralisation.

Page 15 of 53

Figure 3: Cross Section looking north showing simplified geology and

November 2019 Mineral Resource constraining pit shell and stope outlines, 25 metre clipping

Figure 4: Gilmour deposit longitudinal projection (looking southwest) illustrating geology and resource categories and

November 2019 Mineral Resource constraining pit shell and stope outlines

Page 16 of 53

Gold Mineralisation

Gold mineralisation domains have been constructed consistent with the geological interpretation described above and are discussed below in order of importance:

  • The main high‐grade laminated vein is highly continuous and modelled to the observed geological contacts in diamond core which range in thickness from 0.2 to >1 metre. In the 1 metre sampled RC drilling, geometry, logging codes and a subtle pXRF Pb response marks the location of the laminated vein which is modelled to a minimum of 1 metre and up to 5 metres wide. Note that RC and diamond sampling is separated spatially above and below approximately 250 mRL respectively (Figure 4).
  • The proximal halo is modelled to elevated gold values, logged wall‐rock alteration and geometry. Overall thickness of the Gilmour Main Shear (vein plus halo) ranges from 1 to 8 metres giving an average width of 4 metres.
  • The folded veins are more difficult to model due to their less well understood continuity. Mineralised intervals are selected using a combination of geology, geometry and a lower cut‐off grade of 0.20 g/t Au with up to 4 metres of internal waste included. Further drilling is required to improve the confidence in continuity in this domain and better define vein frequency.
  • The footwall vein is modelled as sub‐parallel to the main high‐grade vein with a minimum width of 2 metres in RC samples and 1 metre in diamond, geological continuity is reasonable, but grade continuity is less well understood.

Figure 5: Diamond drill core photo of 18WDDD0024 illustrating the relationship of the observed and

interpreted geology to the domaining strategy applied to the resource estimate

Page 17 of 53

Visible gold (>0.5 mm grains) is commonly observed in nearly all diamond drill intersections of the high‐grade laminated vein and is easily panned from RC samples4. Diamond hole 18WDDD0024 was scanned using Orexplore X‐ ray technology which "maps" the density of the sample down to a 2 µm point‐scale allowing detailed understanding of the physical distribution of gold grains in the rock mass. The scans confirmed that 0.2 to 0.6 millimetre gold grains are evenly distributed throughout the main laminated quartz vein and are closely associated with fractures and laminations sub‐parallel to vein margins. Gold was also observed to be closely associated with pyrite.

High grade results derived from the traditional Fire Assay methodology were validated using the recently developed Chrysos PhotonAssay5 technique offered by MinAnalytical laboratories to investigate potential nugget‐related issues and provide a more robust and reliable analysis of the coarse gold mineralisation. The PhotonAssay (75.46 g/t Au) results from hole 18WDDD0024 produced similar grades to the Fire Assay (67.14 g/t Au) to confirm that the gold is well distributed throughout the vein as defined by the Orexplore scan.

Visible gold has also been observed associated with the folded veins and the footwall vein, with individual gold assay grades reported up to 57.20 g/t Au.

Drilling Techniques, Sampling and Sub‐sampling Techniques, and Sample Analysis

Sampling at the Gilmour deposit has been carried out using a combination of RC and diamond drilling. Drilling was completed between 2015 and 2019 and was undertaken entirely by Gold Road utilising a variety of drilling contractors.

Following the initial discovery, a total of 16,728 metres of drilling relevant to defining the Gilmour resource has been completed; comprising 68 RC holes (12,546 metres), and 22 diamond holes (4,182 metres). Full details, including comprehensive reporting of assay results and intersections, for all drill holes used in the resource have been previously reported, with a listing of relevant ASX announcements provided in Appendix 2.

Drilling at Gilmour extends for approximately 1,500 metres northwest to southeast with the main 500 metre long zone of mineralisation drilled on a consistent 50 metre section spacing to a depth of 150 metres below surface. Drill holes on the 50 metre sections are generally 50 metres apart in the upper 150 metres and extending to approximately 100 metres apart in and between sections below that. This drill spacing provides appropriate detail to interpret continuity of both geology and gold mineralisation between the 50 metre sections and defines the Indicated component of the Resource.

Drill sections are oriented west‐east, with majority of holes oriented 60° to 270. A small component of drilling has been drilled at an orientation of 60° towards 250 and 60° towards 160 to appropriately test change in strike of the mineralisation associated with dragging adjacent to the Waters Fault. The orientation of the drilling is approximately perpendicular to the regional dip and strike of the targeted mineralisation. Both drilling and modelling is conducted in projected grid MGA‐94 Zone 51.

One diamond hole was completed to twin an RC hole in the weathered Lower Saprolite zone. This diamond twin confirmed the location and thickness of the RC mineralised intersection. The tenor of the grades returned from the diamond sampling is only slightly lower than the RC, with variance ascribed to the volume difference between the two sample types.

All RC holes were drilled with a 5.25 inch face‐sampling bit, with 1 metre samples collected through a cyclone and cone splitter, to form a 2 to 3 kilogram sample. All assays derived from RC drilling used in the resource are based on the original 1 metre sample intervals collected from the drilling during operations.

  • Refer ASX announcement dated 19 December 2018
  • Chrysos PhotonAssay is an assay method using X‐ray activation of gold atoms. One of the benefits over Fire Assay is the final charge size.

In nuggety gold scenarios, larger samples will give better results, the PhotonAssay charge is 300 to 450 grams while Fire Assay is only 50 grams.

Page 18 of 53

Sampling of diamond core was based primarily on discrete geological contacts of the laminated high‐grade vein, and subsidiary folded vein intervals. These intervals are as small as 20 centimetres and no larger than 1.2 metres. The average length of diamond core samples in the laminated high‐grade vein was 80 centimetres. The core was cut in half for both NQ and HQ core diameter to produce a sample mass of 3 to 4 kilograms per sample.

Samples were prepared at the Intertek Laboratory in Kalgoorlie. Samples were dried, and the whole sample pulverised to 80% passing 75 µm, and a sub‐sample of approximately 200 grams retained. A nominal 50 grams was used for standard analysis by Fire Assay. The procedure is industry standard for this type of sample. All samples were analysed at the Intertek Laboratory in Perth. The analytical methods used for RC and diamond drilling methods were as follows:

  • 13,791 RC samples used a 50 gram Fire Assay with ICPOES finish
  • 7,010 diamond samples used a 50 gram Fire Assay with ICPOES finish
  • 29 diamond samples used PhotonAssay.

Gold Road observes a standard QAQC protocol for all drilling programmes of:

  • Field Standards (Certified Reference Materials) and Blanks inserted at a rate of 4 Standards and 4 Blanks per 100 samples
  • Field Duplicates are generally inserted at a rate of approximately 1 in 40. For RC drilling the duplicate sample is taken directly from the rig mounted rotary cone splitter from a dedicated duplicate sample chute, duplicate samples were not collected from diamond core
  • At the Laboratory, regular assay Repeats, Laboratory Standards, Checks and Blanks are analysed.

For the reported Resource the relevant assays and QAQC numbers are as follows:

  • Total sample submission of 23,187 samples. This included 970 Field Blanks, 930 Field Standards and 478 Field Duplicates
  • In addition, 979 Laboratory Blanks, 857 Laboratory Checks, and 933 Laboratory Standards were inserted and analysed by Intertek Laboratories
  • 29 samples were analysed using PhotonAssay at Minanalytical Laboratories and can be considered check assays.

The drill hole locations were initially picked up by handheld GPS, and later picked up by a qualified surveyor using DGPS with final collars located within one centimetre accuracy in elevation. Downhole directional surveying using north‐seeking Gyroscopic tools was completed on site. Most diamond drill holes were surveyed live whereas most RC holes were surveyed upon exiting the hole.

Estimation Methodology

Wireframes of material type (regolith) boundaries, lithology and mineralisation were constructed utilising a cross sectional interval selection method in Leapfrog software, these wireframes were validated in all orientations. The wireframes were applied as hard boundaries in the grade estimation, with the exception of the main high‐grade vein sub‐domain, which accounts for strike changes associated with the Waters Fault. It should be noted that Proterozoic Dykes 'stope out' mineralisation, and are assigned background gold grades (0.01 g/t Au). Bulk density values are applied according to material type (regolith) and are based on diamond core measurements taken locally and validated against more extensive data in other nearby deposits.

Page 19 of 53

Gold grade estimation for the Gilmour Mineralised Domain is summarised as follows:

  1. Samples within mineralised domains are composited to 1 metre. For the main high‐grade domain samples were selected using geological criteria described in the Gold Mineralisation section above. Sample intervals for this domain vary from 0.2 to 1.2 metres. Where the main vein is only one sample wide, this sample is not composited. Where the selection includes more than one sample, and their combined length is 1 metre or less, these intervals are composited to the total length of the two samples. Where the interval length is greater than 1 metre (the maximum length in this domain is 1.2 metres), the sample is not split or composited further.
  2. Top‐cuts were applied to composites within mineralisation wireframes to manage the impact of high‐grade samples to the Ordinary Kriging estimate (Table 2). The selection methodology to derive the top‐cut value combines interrogation of disintegration points on the histogram with detailed analysis of the cumulative distribution plots. The significant high grades noted in the main high‐grade vein domain are evenly distributed, and do not indicate the need for a separate sub‐domain for estimation. Descriptive statistics of this domain indicate a stationary population and capping of samples does not materially alter the mean grade or the co‐ efficient of variation.

Table 2: Top cuts applied for each domain

Domain

Grade

(g/t Au)

2300

- Footwall Vein

20

2500

- Main High‐Grade Vein

100

2550

- Proximal Halo

15

2700

- Folded Veins

25

  1. Variograms and the resultant search ellipse for estimation of the mineralised domains are oriented parallel to the observed dip and strike of the mineralisation and regional foliation. A plunge orientation observed during the exploratory data analysis is confirmed by structural measurements collected from oriented diamond core.
  2. A sub‐domain was utilised in the estimation of the main high‐grade vein where the dip and strike of the mineralisation rotates in response to drag movement associated with the Waters Fault.
  3. The block model was rotated to parallel the strike and dip of the main high‐grade vein, and regional foliation (330° and 55° respectively). The rotation of the model allowed for an improved representation of volume and estimation quality.
  4. Estimation of the Mineralised Domains of the Mineral Resource utilises Ordinary Kriging. This is considered the most appropriate method with respect to the observed continuity of mineralisation, spatial analysis (variography) and dimensions of the domains defined by drilling.
  5. Validation steps included comparison of input assay data to the output model grade estimate to ensure minimal bias.

Criteria Used for Classification

The Gilmour Maiden Mineral Resource is constrained by a Lerch‐Grossman (using Whittle) optimised pit shell, and Mineable Shape Optimiser (MSO) underground shapes that consider all available mineralisation in the geological model with at least an Inferred level of confidence. Several factors have been used in combination to derive the Mineral Resource classification categories for mineralisation:

  • Drill hole spacing: classification is influenced by the data spacing (Table 3)
  • Geological continuity: Gilmour main laminated vein and geological continuity is high, the position and width of mineralised lodes is predictable and repeatable
  • Grade continuity: the continuity of mineralisation is less reliable than the geology, in less well drilled areas the data density is such that continuity can only be assumed

Page 20 of 53

  • Estimation quality parameters: derived from the Ordinary Kriging process and assessed using Kriging Neighbourhood Analysis methods provide a guide to the quality of the estimate

Table 3: Drill Hole Spacing by Classification, Gilmour Maiden Mineral Resource

Inventory Classification

Domain

Criteria

Measured

Indicated

Inferred

Target Spacing

50 mX by 50 mY

50 mX by 100 mY

Actual Spacing

40 mX to 50 mX by

50 mX to 100 mX by

All Mineralised

50 mY

50 mY to 100 mY

Domains

Boundary

25 m along strike

50 m along strike

<25m down dip

<25m down dip from

Extension

from last drill hole

last drill hole

The constrained Mineral Resource block estimates are interpolated, extrapolated estimates do not form part of the resource.

Mineral Resource Estimate

The potential operating strategy at Gilmour assumes mining by both open pit and underground methods. Potential ore mined could be trucked to and processed at the Gruyere Mine processing facility via toll treatment agreement available under the Gruyere JV agreement. Preliminary extractive metallurgical test work completed on samples collected from Gilmour indicates that the potential ore is amenable to gravity recovery and conventional cyanidation with high recovery, ranging from 89% to 99% with 28% to 82% of the gold recovered by gravity separation. The recovery applied to optimisation processes and to calculate the cut‐off grade constraining the Mineral Resource is 94%.

Processing costs are based on Gruyere process plant operating costs projected from the Gruyere 2019 Business Plan and include an allowance to cover mine to mill haulage of approximately 55 kilometres by road (including re‐handle), and allowances for administration costs and sustaining capital.

Open Pit Mineral Resource Estimate

The Open Pit Mineral Resource estimation assumes mining via conventional open pit methods utilising a contract mining fleet appropriately scaled to suit the size of the deposit. Key parameters and methodology used in estimating the Gilmour Open Pit Mineral Resource include:

  • Mineralisation is constrained within a Lerch‐Grossman (using Whittle) optimised pit shell (Figure 6) using an A$1,850 per ounce gold price and is considered to determine the portion of the total mineralised inventory that has a reasonable prospect of eventual economic extraction
  • Only Indicated and Inferred resource categories of mineralisation within this optimised pit shell have been reported as Mineral Resource
  • The cut‐off grade used for reporting the resource contained within the optimised shell is 0.50 g/t Au
  • No allowance for dilution or mining recovery has been made, however geology has been modelled to a minimum of 2 metres
  • Mining and Geotechnical parameters are extrapolated from pre‐feasibility level studies previously completed on the neighbouring Golden Highway project.

Page 21 of 53

Figure 6: Isometric views of Gilmour illustrating Laminated Vein drill intersections,

Mineral Resource model, pit shell and stope outlines, simplified lithology and faulting

Underground Mineral Resource Estimate

The underground Mineral Resource estimate assumes an operating strategy utilising narrow, long hole open stoping methods appropriately scaled to the dimensions of the deposit. Key parameters and methodology used in estimating the Gilmour Underground Mineral Resource include:

  • MSO software was utilised to constrain the Mineral Resource to determine the portion of mineralisation with reasonable prospects for eventual economic extraction
  • Optimal mining shapes were based on a 2.5 metre minimum mining width, 15 metre sub‐level interval, and 15 metre minimum stope strike length
  • Only Indicated and Inferred resource categories of mineralisation within MSO shapes have been reported as Mineral Resource
  • Mineralisation considered as part of the Gilmour Open Pit Mineral Resource was excluded from the evaluation process ensuring exclusion from the Gilmour Underground Mineral Resource estimate
  • Appropriate mining cost assumptions compatible to the scale and dimensions of the deposit resulting in a cut‐ off grade of 3.50 g/t Au at an A$1,850 per ounce gold price
  • The Mineral Resource tonnage and grade is reported as diluted based on minimum stope widths and is estimated at approximately 30%.

Page 22 of 53

Renegade Mineral Resource

The Renegade Mineral Resource has been reviewed internally and has been completed in accordance with the JORC Code 2012 Edition. The re‐estimation includes improvements in understanding of mineralisation controls through detailed geological interpretation, and optimisation for open pit extraction. The Renegade Mineral Resource is constrained within an A$1,850 per ounce Lerch‐Grossman (using Whittle) optimised pit shell and quoted at a 0.50 g/t Au cut‐off.

The November 2019 Mineral Resource totals 934,700 tonnes at 1.30 g/t Au for 39,200 ounces of gold (Table 4). All material within the November 2019 Mineral Resource optimised pit shell is classified as Inferred.

Table 4: Summary of the November 2019 Renegade Mineral Resource

Renegade Mineral Resource ‐ November 2019

Tonnes

Grade

Contained

Project Name / Category

Metal

(t)

(g/t Au)

(oz Au)

Renegade

934,700

1.30

39,200

Measured

Indicated

Measured and Indicated

Inferred

934,700

1.30

39,200

Notes:

  • The Mineral Resource is completed in accordance with the JORC Code 2012 Edition
  • All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
  • Open Pit Mineral Resource constrained within an A$1,850/oz optimised pit shell and reported at a 0.50 g/t Au cut‐off
  • Mining, processing and geotechnical parameters for evaluation were derived from PFS and ongoing operational planning studies
  • All dollar amounts are in Australian dollars unless otherwise stated

Project History and Mineral Resource Variance

Gold was first discovered on the Yamarna Greenstone Belt in the early 1980's at Attila on the Golden Highway Trend to the South of Renegade. Drilling in the area was undertaken by several different companies including: WMC (1995), Asarco (2003) and Eleckra/Gold Road from 2006. The first resource was completed in 2008 to JORC 2004 guidelines and was not reported within a constrained, optimised, pit shell. The previous resource of approximately 70,000 ounces was removed from the Mineral Resources in 2015, as the company applied greater rigour in the evaluation and economic constraint of Mineral Resources in accordance with JORC 2012 guidelines. The deposit was renamed Renegade to avoid confusion with the Khan prospect to the south. Following review of the geological and mineralisation interpretation, and application of appropriate modifying factors in optimisation, a Mineral Resource is now reported.

Deposit Geology

The Renegade deposit is located in the central‐western part of the YGB, within the Toppin Hill tectonostratigraphic group (Figure 1). The Renegade mineralisation occurs within the northern strike extension of the Golden Highway Shear Zone (GHSZ) that hosts the Attila‐Alaric group of deposits, approximately 14 kilometres north of the Alaric deposit. Gold mineralisation is hosted primarily within a weakly deformed feldspar‐phyric porphyry unit that is situated in a more strongly deformed volcanosedimentary package, (Figures 7, 8 and 9). A summary description of the interpreted geology and main mineralisation controls is provided below:

1. Gold mineralisation at Renegade is hosted within a north‐northwest striking, steep west‐dipping dacitic porphyry unit with a highly strained basalt and andesite footwall and an intercalated basalt and intermediate sediment hangingwall. All lithologies form part of the Toppin Hill Lower Formation that is characterised by mafic to intermediate volcanosedimentary units.

Page 23 of 53

  1. The feldspar‐phyric porphyry (Renegade Porphyry) is a relatively brittle and competent body located at the intersection of the northern extension of the GHSZ and the north‐west striking Quisling Fault. It is interpreted that the rheological contrast between the porphyry and the country rocks in conjunction with the shear/fault intersections resulted in initial brittle failure of the porphyry during deformation providing dilatant sites for gold mineralisation.
  2. Deformation within the porphyry is strongly partitioned and presents as a brittle‐ductile progression of generally flat chlorite and quartz infilled crackle breccia/stock work that coalesces into anastomosing north‐ northwest striking, steep west dipping mineralised shears aligned with the main foliation of the GHSZ in the area.
  3. Higher grades are associated with increased density of chlorite/biotite filled fractures and thin quartz vein (<1 cm) stockwork. Thicker (5 to 20 centimetre) quartz and laminated quartz veining has been modelled as a continuous internal high‐grade zone within a proximal halo.
  4. Strongest alteration manifests as albite + biotite + pyrite.

Figure 7: Plan illustrating simplified geology and November 2019 Mineral Resource constraining pit shell

Page 24 of 53

Regolith and Weathering

Minimal transported cover is observed over the Renegade deposit. The regolith profile is highly stripped, with the depth to fresh rock averaging 10 metres.

Figure 8: Cross Section looking north showing simplified geology and

November 2019 Mineral Resource constraining pit shell, 25 metre clipping

Page 25 of 53

Figure 9: Renegade deposit longitudinal projection (looking east) showing resource categories and November 2019 Mineral Resource constraining

pit shell. The resource is hosted within a felsic porphyry of similar composition to the Gruyere Porphyry

Gold Mineralisation

Gold mineralisation domains have been constructed consistent with the geological interpretation described above and are discussed below:

  • The main internal high‐grade domain has been modelled as a continuous lode utilising logging codes, geometry and an approximate 0.30 to 0.50 g/t Au cut‐off. Thickness ranges from a minimum of 1 metre to 8 metres wide in the zone of maximum dilation which is related to a subtle strike (from north‐south to north‐northwest) change that is likely associated with the Quisling Fault.
  • The proximal halo domain which surrounds the internal high‐grade domain has been modelled as an anastomosing shear zone utilising logging codes, geometry and an approximate 0.10 to 0.30 g/t Au cut‐off and the inclusion of up to 4 metres of internal waste. Thicknesses are often greater than 10 metres, however gold tenor is low in comparison to the internal high‐grade domain.
  • Several subsidiary mineralised shear domains in the hangingwall and footwall of the main zone have been modelled as anastomosing shear zones utilising the same criteria as the proximal halo.

Visible gold (<0.3 millimetres) was observed in drill core during the re‐interpretation stage and selected zones of mineralisation were scanned using Orexplore X‐Ray technology. The scans showed that fine gold grains were hosted within pyrite clusters occurring on fracture planes of weakness within the porphyry. Coarser grains of gold also occur on some of these fracture planes and within laminated veins.

Page 26 of 53

Drilling Techniques, Sampling and Sub‐sampling Techniques, and Sample Analysis

Sampling at the Renegade deposit has been carried out using a combination of RC and diamond drilling. Drilling was completed between 1995 and 2017 by several companies, utilising a variety of drilling contractors.

A total of 16,335.06 metres of drilling relevant to defining the Renegade resource has been completed, comprising 137 RC holes (15,254 metres) and 4 diamond holes (1,081.06 metres). A total of 6 historic RC holes have been excluded from the estimate due to 4 metre composite samples being collected through mineralised zones. Full details, including comprehensive reporting of assay results and intersections, for all drill holes used in the resource have been previously reported, with a listing of relevant ASX announcements provided in Appendix 2.

Drilling at Renegade extends for approximately 1,200 metres north‐south with 1,000 metres of strike drilled on consistent 50 to 100 metre section spacings to a depth of 75 to 100 metres below surface. Drill holes on the 50 metre sections are generally 25 to 50 metres apart. This drill spacing provides an appropriate level of detail to interpret the continuity of both geology and gold mineralisation between sections. However, the lack of diamond drill information to confirm the geological interpretation has resulted in the resource remaining at an Inferred level of classification.

Drill sections are oriented west‐east (Attila Local Grid), with most holes oriented 60° to 090° (Local). Six holes have been drilled 60° to 270°, and six holes are vertical. The orientation of drilling is approximately perpendicular to the regional dip and strike of the targeted mineralisation and the local grid is utilised for both drilling and modelling.

Two sets of RC pairs, with 10 to 15 metres separation, confirm the location, width and tenor of the mineralisation to be repeatable at close scale.

All RC holes were drilled with a 5.25 inch face‐sampling bit, with 1 metre samples collected through a cyclone and riffle splitter (cone splitter for samples collected after 2016), to derive a 2 to 3 kilogram sample. All RC assays used in the resource are based on the original 1 metre sample intervals collected from drilling during operations.

Drill core is cut in half by a diamond saw and half core samples collected to geological contacts, at an average length of one metre, and submitted for assay analysis.

For samples collected post 2006 the samples were dried, and the whole sample pulverised to 80% passing 75 µm, and a sub‐sample of approximately 200 grams retained. A nominal 50 grams was used for analysis by Fire Assay.

The procedure is industry standard for this type of sample. It is assumed that historical samples underwent industry standard procedures at the time of their collection and analysis.

Gold Road observes a standard QAQC protocol for all drilling programmes of:

  • Field Standards (Certified Reference Materials) and Blanks inserted at a rate of 4 Standards and 4 Blanks per 100 samples, in historical drilling this ratio was 3 Standards and 3 Blanks per 100 samples
  • Field Duplicates are generally inserted at a rate of approximately 1 in 40. For RC drilling the duplicate sample is taken directly from the rig mounted rotary cone splitter from a dedicated duplicate sample chute, duplicate samples were not collected from diamond core
  • At the Laboratory, regular assay Repeats, Laboratory Standards, Checks and Blanks are analysed.

Page 27 of 53

The analytical methods used for RC and diamond drilling methods were as follows:

  • 242 RC samples used a 10 gram Aqua Regia with AAS finish
  • 322 RC samples used a 10 gram Aqua Regia with GAAS finish
  • 2,547 RC samples used a 50 gram Fire Assay with AAS finish
  • 216 RC samples used a 50 gram Fire Assay with FAAS finish
  • 1,834 RC samples used a 50 gram Fire Assay with ICPES finish
  • 1,116 diamond samples used a 50 gram Fire Assay with ICPES finish

For the reported resource the relevant assays and QAQC numbers are as follows:

  • Total sample submission of 6,792 samples. This included 151 Field Blanks, 293 Field Standards and 66 Field Duplicates.
  • In addition, 136 Laboratory Blanks, 194 Laboratory Checks, and 248 Laboratory Standards were inserted and analysed.

The drill hole locations were initially picked up by handheld GPS, and later picked up by a qualified surveyor using DGPS with final collars located within one centimetre accuracy in elevation.

Estimation Methodology

Wireframes of regolith boundaries, lithology and mineralisation were constructed utilising a cross sectional interval selection method, these wireframes were validated in all orientations. The wireframes were applied as hard boundaries in the grade estimation. Appropriate top cuts were applied per domain to limit the effect of extreme gold grade values. Bulk density values are applied according to material type (weathering) and are based on diamond core measurements taken locally and from the Gruyere deposit.

Gold grade estimation for the Renegade Mineralised Domains is summarised as follows:

  1. Assay data was selected within the wireframes, composited to one metre lengths and a top‐cut applied according to domain and grade statistics.
  2. Estimation by domain was completed using Ordinary Kriging methods with optimised search neighbourhoods aligned to the interpreted mineralisation trend.
  3. Validation steps included comparison of input assay data to the output model grade estimate to ensure minimal bias.

Criteria Used for Classification

The Mineral Resource is classified in the Inferred category. Further diamond and RC drilling is required to confirm the geological interpretation.

The Mineral Resource Update is constrained by a Lerch‐Grossman (using Whittle) optimised pit shell that considers all available mineralisation in the geological model with at least an Inferred level of confidence. Several factors have been used to derive the resource classification categories for mineralisation:

  • Drill hole spacing: classification is influenced by the data spacing, as indicated in Table 5
  • Geological continuity: Renegade geological continuity is considered good, and the location and width of mineralised lodes is reasonably predictable

Page 28 of 53

  • Grade continuity: the continuity of mineralisation grade is reasonable on the main shear, and lesser in hangingwall and footwall structures. In poorly drilled areas the data density is such that continuity can only be assumed
  • Estimation quality parameters: derived from the Ordinary Kriging process and assessed using Kriging Neighbourhood Analysis methods as a guide to the quality of the estimate
  • Based on the defined criteria 100% of Renegade is classified as Inferred Resource.

Table 5: Drill hole spacing by Mineral Resource Classification category, Renegade Deposit

Inventory Classification

Domain

Criteria

Measured

Indicated

Inferred

Target Spacing

50 mX by 100 mY

All

Actual Spacing

50 mX by 100 mY and

25 mX by 50 mY

Mineralised

Domains

Boundary

50 m along strike

~25m down dip from last

Extension

drill hole

Detailed analysis using geostatistics and spatial variance (variography) indicate the Renegade deposit data has a moderate nugget effect with reasonable grade continuity along strike. Current drill spacing is sufficient to imply geological and grade continuity.

Mineral Resource Estimate

The potential operating strategy assumes conventional open pit methods utilising a contract mining fleet appropriately scaled to the size of the deposit. Potential ore could be trucked to and processed in the neighbouring Gruyere Mine process plant via a toll treatment agreement available under the Gruyere JV agreement. Metallurgical recovery assumptions used in the optimisation are informed by historic bottle‐roll test‐work completed in 2007 indicating high recovery was possible. The recovery applied to optimisation processes and to calculate the cut‐off grade constraining the Mineral Resource is 94%.

Processing costs are based on Gruyere process plant operating costs projected from the Gruyere 2019 Business Plan and include an allowance to cover mine to mill haulage of approximately 35 kilometres by road (including re‐handle), and allowances for administration costs and sustaining capital.

Key parameters used in estimating the reported Mineral Resource include:

  • Mineralisation constrained within an optimised pit shell using an A$1,850 per ounce gold price is considered to determine the portion of the total mineralised inventory that has a reasonable prospect of eventual economic extraction
  • Only Inferred resource categories of mineralisation within this optimised pit shell have been reported as Mineral Resource
  • The cut‐off grade used for reporting the resource contained within the optimised shell is 0.50 g/t Au
  • No allowance for dilution or mining recovery has been made, however geology has predominantly been modelled to a minimum of 2 metres
  • Mining and Geotechnical parameters from pre‐feasibility level studies previously completed on the neighbouring Golden Highway project are used in the estimate.

Page 29 of 53

Appendix 2 - Previous ASX Announcements

Gilmour

Date

Announcement Title

Significance

28/05/2019

Yamarna Exploration Update - May 2019

Exploration Update & Drill Results

30/01/2019

Gilmour Infill Drilling Establishes High‐Grade Potential

Drill Results

19/12/2018

Yamarna Exploration Update - More Visible Gold at Gilmour

Exploration Update & Drill Results

19/11/2018

High‐Grade Drill Results from Gilmour Deposits

Drill Results

09/07/2018

Yamarna Exploration Update - July 2018

Exploration Update & Drill Results

07/05/2018

Smokebush and Wanderrie Drilling Confirms High‐Grade Gold in Southern Yamarna

Drill Results

19/12/2017

Yamarna Exploration Update - High‐grade Bedrock Success and New Anomalies

Exploration Update & Drill Results

Defined

11/10/2017

North Yamarna Exploration Update

Exploration Update & Drill Results

05/11/2015

Wanderrie Supergroup Delivers the Hits

Exploration Update & Drill Results

Renegade

Date

Announcement Title

Significance

9/07/2018

Yamarna Exploration Update - July 2018

Drill Results

27/07/2017

Quarterly Activities and Cashflow Report - June 2017

Drill Results

27/06/2017

Yamarna Exploration Update: Significant Intersections Returned Across the

Drill Results

Tenement Package

16/09/2015

Gruyere Resource Increases to 5.62 Million Ounces; Yamarna Mineral Resource

Removed from Mineral Resource

Fully JORC 2012 Compliant

20/03/2012

High Grade Results at Central Bore and Attila Trend

Drill Results

31/01/2012

Quarterly Activities and Cashflow Report

Drill Results

23/11/2011

Gold Road Makes Another New Gold Discovery At Yamarna Belt

Drill Results

21/10/2011

Annual Report to Shareholders

Drill Activities

14/10/2011

Gold Road Continues Exploration Success at Yamarna

Drill Results

24/09/2010

Annual Report to Shareholders

Drill Results

1/02/2010

Excellent Gold Recoveries from Metallurgical Testwork

Metallurgical Test Results

29/01/2010

Quarterly Activities and Cashflow Report - December 2009

Drill Results

4/12/2009

Drilling Confirms High Grade Gold at Khan North Deposit

Drill Results

1/09/2008

New Gold Resource Estimate for Yamarna Gold Project

Initial Resource Estimation

26/10/2007

2007 Annual Report

Drill Results

30/06/2007

Fourth Quarter Activities Report

Drill Results

27/06/2007

Results of RC Drilling Program at Yamarna Gold Project

Drill Results

29/01/2007

Second Quarter Activities Report

Drill Results

27/10/2006

Annual Report 2006

Drill Results

27/10/2006

First Quarter Cashflow Report

Drill Results

13/09/2006

Results of First Drilling Programme at Yamarna Gold Project

Drill Results

Page 30 of 53

Appendix 3 - JORC Code 2012 Edition Table 1 Report

Gilmour

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria and JORC Code explanation

Commentary

Sampling techniques

The sampling has been carried out using a combination of diamond

Nature and quality of sampling (eg cut channels, random chips, or

drilling (DDH) and Reverse Circulation (RC).

A total of 90 holes are

specific specialised industry standard measurement tools appropriate to

relevant to the construction of the Gilmour resource.

the minerals under investigation, such as down hole gamma sondes, or

Hole

Number

Metres

handheld XRF instruments, etc). These examples should not be t as

Type

of Holes

(m)

limiting the broad meaning of sampling.

RC

68

12,546.00

DDH

22

4,182.42

Total

90

16,728.42

DDH: Drill

core is logged

geologically

and marked up for assay at

approximate 0.20‐1.20 m intervals based on geological observations.

Drill core is cut in half by a diamond saw and half core samples

submitted for assay analysis.

RC: Samples were collected as drilling chips from the RC rig using a

cyclone collection unit and directed through a static cone splitter to

create a 2‐3 kg sample for assay. Samples were taken as individual 1

metre samples.

Include reference to measures taken to ensure sample representation

Sampling was carried out under Gold Road's protocol and QAQC

and the appropriate calibration of any measurement tools or systems

procedures. Laboratory QAQC was also conducted. See further details

used.

below.

Aspects of the determination of mineralisation that are Material to the

DDH drilling was completed using a HQ3 or NQ2 drilling bit for all holes.

Public Report.

Core is cut in half for sampling, with a half core sample sent for assay at

In cases where 'industry standard' work has been done this would be

measured intervals.

relatively simple (eg 'reverse circulation drilling was used to obtain 1 m

RC holes were drilled with a 5.25 inch face‐sampling bit, 1 m samples

samples from which 3 kg was pulverised to produce a 30 g charge for

collected through a cyclone and static cone splitter, to form a 2‐3 kg

fire assay'). In other cases more explanation may be required, such as

sample. For

all samples

the entire 1m sample was sent to the

where there is coarse gold that has inherent sampling problems.

laboratory for analysis.

Unusual commodities or mineralisation types (eg submarine nodules)

All DDH and RC samples were dried and fully pulverised at the lab to ‐

may warrant disclosure of detailed information.

75 um, to produce a 50 g charge for Fire Assay with ICPES finish. All

pulps from the samples were also analysed by the laboratory using a

desk mounted Portable XRF machine to provide a 30 element suite of

XRF assays.

Drilling techniques

DDH drilling rigs operated by DDH1 and Orlando Drilling collected the

Drill type (eg core, reverse circulation, open‐hole hammer, rotary air

diamond core as HQ3 (61.1 mm) and NQ2 (45.1 mm) size for sampling

blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or

and assay. All suitably competent drill core (100%) is oriented using

standard tube, depth of diamond tails, face‐sampling bit or other type,

Reflex orientation tools, with core initially cleaned and pieced together

whether core is oriented and if so, by what method, etc).

at the drill site, and fully orientated by Gold Road field staff at the

Yamarna Exploration facility.

RC drilling rigs, owned and operated by Raglan, Ranger, and Orlando

Drilling were used to collect the RC samples. The face‐sampling RC bit

has a diameter of 5.25 inches (140 mm).

Drill sample recovery

The majority of samples collected from all drilling were dry, minor RC

Method of recording and assessing core and chip sample recoveries and

samples were damp.

results assessed.

DDH: All diamond core

collected is dry.

Driller's measure core

recoveries for every drill run completed using 3 and 6 metre core

barrels. The core recovered is physically measured by tape measure

and the length recovered is recorded for every 3 metre 'run'. Core

recovery can be calculated as a percentage recovery. Almost 100%

recoveries were achieved, with minimal core loss recorded in strongly

weathered material near surface.

RC: The majority of RC samples were dry. Drilling operators' ensured

water was lifted from the face of the hole at each rod change to ensure

water did not interfere with drilling and to make sure samples were

collected dry. Wet or damp samples are recorded in the database. RC

recoveries were visually estimated, and recoveries recorded in the log

as a percentage. Recovery of the samples was good, generally

estimated to be full, except for some sample loss at the top of the hole.

All mineralised samples were dry. Gold Road procedure is to stop RC

drilling if water cannot be kept out of hole and continue with a DDH tail

at a later time if required.

Page 31 of 53

Criteria and JORC Code explanation

Commentary

Measures taken to maximise sample recovery and ensure

DDH: Diamond drilling collects uncontaminated fresh core samples

representative nature of the samples.

which are cleaned at the drill site to remove drilling fluids and cuttings

to present clean core for logging and sampling.

RC: Face‐sample bits and dust suppression were used to minimise

sample loss. Drilling airlifted the water column above the bottom of the

hole to ensure dry sampling. RC samples are collected in a calico bag

through a cyclone and static cone splitter, a 2 to 3 kg lab sample and

field duplicate are collected, and the reject deposited in a plastic bag.

Whether a relationship exists between sample recovery and grade and

DDH: No sample bias or material loss was observed to have taken place

whether sample bias may have occurred due to preferential loss/gain of

during drilling activities.

fine/coarse material.

RC: No significant sample bias or material loss was observed to have

taken place during drilling activities.

Logging

All chips and drill core were geologically logged by Gold Road geologists,

Whether core and chip samples have been geologically and

using the Gold Road logging scheme. Detail of logging was sufficient for

geotechnically logged to a level of detail to support appropriate Mineral

mineral resource estimation and technical studies.

Resource estimation, mining studies and metallurgical studies.

Whether logging is qualitative or quantitative in nature. Core (or

Logging of DDH core records lithology, mineralogy, mineralisation,

costean, channel, etc) photography.

alteration, veining, structure, weathering, colour and other features of

the samples. All core is photographed in the core trays, with individual

photographs taken of each tray both dry and wet.

Logging of RC chips records lithology, mineralogy, mineralisation,

alteration, veining, weathering, colour and other features of the

samples. All samples are wet‐sieved and stored in a chip tray.

Portable XRF (pXRF) measurements are taken at the Intertek Laboratory

in Perth for all of the RC and diamond samples to assist with

mineralogical and lithological determination.

The total length and percentage of the relevant intersections logged

All holes were logged in full.

Sub‐sampling techniques and sample preparation

Core samples were cut in half using an automated Corewise diamond

If core, whether cut or sawn and whether quarter, half or all core taken.

saw. Half core samples were collected for assay, and the remaining half

core samples stored in the core trays.

If non‐core, whether riffled, tube sampled, rotary split, etc and whether

RC: 1 m drill samples are channelled through a static cone‐splitter,

sampled wet or dry.

installed directly below a rig mounted cyclone, and an average 2‐3 kg

sample is collected in a numbered calico bag, and positioned on top of

the plastic bag. >95% of samples were dry, and whether wet or dry is

recorded.

For all sample types, the nature, quality and appropriateness of the

Samples (DDH and RC) were prepared at the Intertek Laboratory in

sample preparation technique.

Kalgoorlie. Samples were dried, and the whole sample pulverised to

85% passing 75um, and a sub‐sample of approx. 200 g retained. A

nominal 50 g was used for the Fire Assay analysis which was completed

in the Intertek Laboratory in Perth. The procedure is industry standard

for this type of sample.

Quality control procedures adopted for all sub‐sampling stages to

DDH: No duplicates were collected for diamond holes.

maximise representation of samples.

RC: A duplicate field sample is taken from the cone splitter at a rate of

approximately 1 in 30 samples. At the laboratory, regular Repeats and

Lab Check samples are assayed.

Measures taken to ensure that the sampling is representative of the in

RC: 1 m samples are split on the rig using a static cone‐splitter, mounted

situ material collected, including for instance results for field

directly under the cyclone. Samples are collected to weigh between 2‐

duplicate/second‐half sampling.

3 kg to ensure total preparation at the pulverisation stage.

Whether sample sizes are appropriate to the grain size of the material

Sample sizes are considered appropriate to give an indication of

being sampled.

mineralisation given the particle size and the preference to keep the

sample weight below a targeted 3 kg mass which is the optimal weight

to ensure the requisite grind size in the LM5 sample mills used by

Intertek in sample preparation.

Page 32 of 53

Criteria and JORC Code explanation

Commentary

Quality of assay data and laboratory tests

DDH and RC: Samples were analysed at the Intertek Laboratory in Perth.

The nature, quality and appropriateness of the assaying and laboratory

The analytical method used was a 50 g Fire Assay with ICPES finish for

procedures used and whether the technique is considered partial or

gold only, which is considered appropriate for the material and

total.

mineralisation. The method gives a near total digestion of the material

intercepted.

Portable XRF provides a semi‐quantitative scan on a prepared pulp

sample. The scan is done through the pulp packet in an air path. A total

of 30 elements are reported using the 'soil' mode i.e. calibrated for low

level silicate matrix samples. The reported data includes the XRF unit

and operating parameters during analysis. The elements available are;

Ag, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Ni, P, Pb, Rb, S, Sb, Se,

Sn, Sr, Th, Ti, U, V, W, Y, Zn and Zr.

Portable XRF data on a prepared pulp are subject to limitations which

include absorption by the air path, as well as particle size and

mineralogical effects. Light elements, in particular are very prone to

these effects. Matrix effect correction algorithms and X‐ray emission

line overlaps (e.g. Fe on Co) are a further source of uncertainty in the

data. Gold Road uses XRF only to assist with determination of rock

types, and to identify potential anomalism in the elements which react

most appropriately to the analysis technique.

Representative lithological units, were also analysed using the Intertek

multi‐element 4A/OM routine which uses a 4 acid digestion of the pulp

sample and then analysis of 60 individual elements using a combination

of either ICP‐OES or ICP‐MS. Individual elements have different

detection limits with each type of machine and the machine that offers

the lowest detection limit is used. Four acid digestion, with the

inclusion of hydrofluoric acid targeting silicates, will decompose almost

all mineral species and are referred to as 'near‐total digestions'. Highly

resistant minerals such as zircon (Zr), cassiterite (Sn), columbite‐

tantalite (Ta), rutile and wolframite (W) will require a fusion digest to

ensure complete dissolution. Four acid digests may volatilise some

elements.

For geophysical tools, spectrometers, handheld XRF instruments, etc,

Portable XRF analysis in the lab is completed by Lab Staff. pXRF

the parameters used in determining the analysis including instrument

machines are calibrated at beginning of each shift. Read times for all

make and model, reading times, calibrations factors applied and their

analyses are recorded and included in the Lab Assay reports. Detection

derivation, etc.

limits for each element are included in Lab reports. pXRF results are

only used for indicative assessment of lithogeochemistry and alteration

to aid logging and subsequent interpretation.

Nature of quality control procedures adopted (eg standards, blanks,

Gold Road protocols for:

duplicates, external laboratory checks) and whether acceptable levels

DDH programmes is for Field Standards (Certified Reference Materials)

of accuracy (ie lack of bias) and precision have been established.

and Blanks inserted at a rate of 4 Standards and 4 Blanks per 100

samples. No field duplicates are collected.

RC programmes is for Field Standards (Certified Reference Materials)

and Blanks inserted at a rate of 4 Standards and 4 Blanks per 100

samples. Field duplicates are generally inserted at a rate of

approximate 1 in 40.

Assay and QAQC Numbers

RC

DDH

Number

Total Sample Submission

15,480

7,707

Assays

13,791

7,010

Field Blanks

605

365

Field Standards

606

324

Field Duplicates

478

Quartz Flush

8

Laboratory Blanks

639

340

Laboratory Checks

570

287

Laboratory Standards

610

323

Umpire Checks

29

Field duplicates for DDH have not

been collected.

Fire Assay Umpire checks have not been completed.

PhotonAssay has been undertaken as an umpire check. Due to the

coarse nature of the gold observed, the traditional Fire Assay grade

results were checked using Chrysos PhotonAssay at the MinAnalytical

Laboratory in Perth to investigate potential nugget related issues. A

total of 29 check PhotonAssay results gave similar grades to the original

Fire Assay confirming that the gold is well distributed throughout the

mineralised interval. For example, 18WDDD0024 returned a Fire Assay

of 67.14 g/t Au and a PhotonAssay of 75.46 g/t Au for the quartz vein

containing visible gold between 268.17 and 268.72 m.

Page 33 of 53

Criteria and JORC Code explanation

Commentary

Verification of sampling and assaying

Significant results are checked by the Exploration Manager, Principal

The verification of significant intersections by either independent or

Resource Geologist and Executive Director. Additional checks are

alternative company personnel.

completed by the Database Manager. High‐grade gold RC samples are

panned or sieved to check for visual evidence of coarse gold.

The use of twinned holes.

DDH hole 18WDDD0022, 4 m at 1.50 g/t Au, is 9 m down dip of RC hole

18WDRC0159, 5 m at 3.64 g/t Au. This is considered a reasonable

demonstration of continuity given the nature of mineralisation, and

location of the intersection in the Lower Saprolite/Saprock.

Documentation of primary data, data entry procedures, data

All field logging is carried out on Xplore tablets using LogChief. Logging

verification, data storage (physical and electronic) protocols.

data is submitted electronically to the Database Geologist in the Perth

office. Assay files are received electronically from the Laboratory. All

data is stored in a Datashed/SQL database system and maintained by

the Database Manager.

Discuss any adjustment to assay data.

No assay data was adjusted. The lab's primary Au field is the one used

for plotting and estimation purposes. No averaging is employed.

Location of data points

AC, RC and DDH locations were determined by handheld GPS, with an

Accuracy and quality of surveys used to locate drill holes (collar and

accuracy of 5 m in Northing and Easting.

down‐hole surveys), trenches, mine workings and other locations used

DDH and RC collars are surveyed post drilling by a Certified Surveyor

in Mineral Resource estimation.

using a DGPS system.

For angled DDH and RC drill holes, the drill rig mast is set up using a

clinometer.

RC and diamond drillers use a true north seeking gyroscope at 30 m

intervals and end‐of‐hole.

Specification of the grid system used.

Grid projection is GDA94, MGA Zone 51.

Quality and adequacy of topographic control.

A topographic surface has been constructed from DGPS pickups of

collar positions, with a further grid of DGPS points collected over the

deposit area.

Data spacing and distribution

RC holes are completed at approximately 50 m intervals on 50 m spaced

Data spacing for reporting of Exploration Results.

lines to 150 m below surface. Diamond drilling below this is at 100 m

centres.

Whether the data spacing and distribution is sufficient to establish the

Drill hole spacing of the reported drill holes is sufficient to assume the

degree of geological and grade continuity appropriate for the Mineral

geological and grade continuity of portions of the deposit classified as

Resource and Ore Reserve estimation procedure(s) and classifications

Indicated. In broader spaced zones of drilling geological continuity can

applied.

be assumed, but grade continuity can only be implied, resulting in

Inferred classification.

Whether sample compositing has been applied.

No sample compositing was completed for analysis.

Orientation of data in relation to geological structure

The majority holes are drilled ‐60 degrees angled to the West (270).

Whether the orientation of sampling achieves unbiased sampling of

This is near to perpendicular to the strike (320) and dip (‐60) of the

possible structures and the extent to which this is known, considering

features controlling mineralisation (eg. vein margins, laminations,

the deposit type.

fractures and foliation).

Three DDH holes were drilled to 160 at ‐60 to test the east‐west

trending Waters Fault and 7 holes were drilled towards 240 to test the

change in strike associated with the Waters Fault.

If the relationship between the drilling orientation and the orientation

Bedrock drill testing is considered to have been near to perpendicular

of key mineralised structures is considered to have introduced a

to the strike and dip of mineralisation. A sampling bias has not been

sampling bias, this should be assessed and reported if material.

introduced.

Sample security

Pre‐numbered calico sample bags were collected in plastic bags (5

The measures taken to ensure sample security.

calico bags per single plastic bag), sealed, and transported by company

transport to the Intertek Laboratory in Kalgoorlie. Pulps were

despatched by Intertek to their laboratory in Perth for assaying.

Audits or reviews

Sampling and assaying techniques are industry‐standard. No specific

The results of any audits or reviews of sampling techniques and data.

external audits or reviews have been undertaken at this stage in the

programme.

Page 34 of 53

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria and JORC Code explanation

Commentary

Mineral tenement and land tenure status

The Tenements are located within the Yilka Native Title Determination

Type, reference name/number, location and ownership including

Area (NNTT Number: WCD2017/005), determined on 27 September

agreements or material issues with third parties such as joint ventures,

2017.

partnerships, overriding royalties, native title interests, historical sites,

The activity occurred within the Cosmo Newberry Reserves for the Use

wilderness or national park and environmental settings.

and Benefit of Aborigines. Gold Road signed a Deed of Agreement with

the Cosmo Newberry Aboriginal Corporation in January 2008, which

governs the exploration activities on these Reserves.

The DDH and RC drilling occurred within tenement E38/2319 and

E38/2249.

The security of the tenure held at the time of reporting along with any

The tenements are in good standing with the Western Australia

known impediments to obtaining a licence to operate in the area.

Department of Mines, Infrastructure, Resource and Safety.

Exploration done by other parties

There has been no historical drilling or work prior to Gold Road activity,

Acknowledgment and appraisal of exploration by other parties.

commencing in 2015.

Geology

The Gilmour deposit is located in the Yamarna Terrane of the Archaean

Deposit type, geological setting and style of mineralisation.

Yilgarn Craton of WA, under varying depths (0 to +60 m) of recent cover.

The mafic‐intermediate volcano‐sedimentary sequence of the Yamarna

Greenstone Belt has been multiply deformed and metamorphosed to

Lower Amphibolite grade and intruded by later porphyries/granitoids.

The Archaean sequence is considered prospective for structurally

controlled primary orogenic gold mineralisation, as well as remobilised

supergene gold due to subsequent Mesozoic weathering.

Mineralisation at Wanderrie is a shear hosted style mineralisation that

sits within a number of stratigraphic positions. These can be found in

mafic sediment, volcanic and dolerite sequences in the north (Santana

and Satriani) and within dacitic and felsic sedimentary packages in the

south (Gilmour - Morello). Mineralisation is typically associated within

and proximal to zones of high strain, biotite - sericite - chlorite - albite

alteration, with a pyrite - pyrrhotite dominant system with accessory

arsenopyrite.

The Gilmour deposit is associated with the regional Yamarna Shear

system, host to the 600,000 oz Golden Highway deposits 25 km to the

north. The intersection of the Gilmour Main Shear with the east‐

northeast trending Waters Fault, the local change in strike of the shear

(from 330° to 320°) and dacitic conglomerate and sandstone host rocks

are likely to be important mineralisation controls.

High‐grade gold mineralisation is associated with laminated quartz

veining and alteration within the Gilmour Main Shear. Visible gold (+0.5

mm grains) is observed with pyrite full width of a central laminated

quartz vein and with folded hangingwall quartz veins.

Drill hole Information

Previous exploration announcements that contain reported drill hole

A summary of all information material to the understanding of the

information for all RC and diamond holes included in the reported

exploration results including a tabulation of the following information

Mineral Resource estimation are listed in Appendix 2.

for all Material drill holes:

easting and northing of the drill hole collar

elevation or RL (Reduced Level - elevation above sea level in

metres) of the drill hole collar

dip and azimuth of the hole

down hole length and interception depth

hole length.

If the exclusion of this information is justified on the basis that the

information is not Material and this exclusion does not detract from the

understanding of the report, the Competent Person should clearly

explain why this is the case.

Data aggregation methods

No top cuts have been applied to the reporting of the assay results.

In reporting Exploration Results, weighting averaging techniques,

Intersections lengths and grades for all holes are reported as down‐hole

maximum and/or minimum grade truncations (eg cutting of high

length‐weighted averages of grades above a cut‐off and may include up

grades) and cut‐off grades are usually Material and should be stated.

to 2 m (cut‐offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut‐off) of

grades below that cut‐off. Cut‐offs of 0.1, 0.5, 1.0 and/or 5.0 g/t Au are

used depending on the drill type and results. Individual grades >10 g/t

Au are also reported.

Note that gram.metres is the multiplication of the length (m) by the

grade (g/t Au) of the drill intersection and provides the reader with an

indication of intersection quality.

Page 35 of 53

Criteria and JORC Code explanation

Commentary

Where aggregate intercepts incorporate short lengths of high grade

Intersections lengths and grades are reported as down‐hole length‐

results and longer lengths of low grade results, the procedure used for

weighted averages of grades above a cut‐off and may include up to 2 m

such aggregation should be stated and some typical examples of such

(cut‐offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut‐off) of grades

aggregations should be shown in detail.

below that cut‐off.

Geologically selected DDH and RC intersections are used in more

advanced stage projects. They are selected to honour interpreted

thickness and grade from the currently established geological

interpretation of mineralisation and may include varying grade lengths

below the cut‐off. As a result, intersections will differ slightly from

previous announcements.

The assumptions used for any reporting of metal equivalent values

No metal equivalent values are used.

should be clearly stated.

Relationship between mineralisation widths and intercept lengths

Drill hole intersections are reported down hole. Due to the geometry

These relationships are particularly important in the reporting of

of drill holes (‐60 to 270) with respect to the mineralisation (‐60 to 050),

Exploration Results.

the intersection widths are slightly greater than the true width of the

If the geometry of the mineralisation with respect to the drill hole angle

mineralisation.

is known, its nature should be reported.

If it is not known and only the down hole lengths are reported, there

should be a clear statement to this effect (eg 'down hole length, true

width not known').

Diagrams

Refer to Figures and Tables in the body and appendices of this and

Appropriate maps and sections (with scales) and tabulations of

previous ASX announcements.

intercepts should be included for any significant discovery being

reported. These should include, but not be limited to a plan view of drill

hole collar locations and appropriate sectional views.

Balanced reporting

Intersections lengths and grades for all holes are reported as down‐hole

Where comprehensive reporting of all Exploration Results is not

length‐weighted averages of grades above a cut‐off and may include up

practicable, representative reporting of both low and high grades

to 2 m (cut‐offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut‐off) of

and/or widths should be practiced to avoid misleading reporting of

grades below that cut‐off. Cut‐offs of 0.1, 0.3, 0.5, 1.0 and/or 5.0 g/t

Exploration Results.

Au are used depending on the drill type and results. Individual grades

>10 g/t Au are also reported.

Numbers of drill holes and metres are included in table form in the body

of the report.

Other substantive exploration data

18 m of diamond core from 18WDDD0024 was scanned using Orexplore

Other exploration data, if meaningful and material, should be reported

X‐ray technology in Perth. This technique "maps" the density of the

including (but not limited to): geological observations; geophysical

sample down to 2 µm points, it currently cannot be used for assay

survey results; geochemical survey results; bulk samples - size and

purposes but is useful for understanding the mineral associations and

method of treatment; metallurgical test results; bulk density,

three dimensional distribution of coarse gold. The scans confirmed that

groundwater, geotechnical and rock characteristics; potential

the gold is evenly distributed throughout the central laminated vein and

deleterious or contaminating substances.

is closely associated with fracturing and laminations sub‐parallel to the

vein margins.

Preliminary extractive metallurgical test‐work was completed by ALS on

samples collected from Gilmour. The test‐work resulted in high

recovery and indicates that the mineralisation is amenable to

conventional gravity recovery and cyanidation.

Further work

Further extensional and infill drilling at Gilmour and exploration drilling

The nature and scale of planned further work (eg tests for lateral

of the Gilmour - Morello system may be required to improve resource

extensions or depth extensions or large‐scale step‐out drilling).

classification, particularly near surface, and grow the resource base.

Diagrams clearly highlighting the areas of possible extensions, including

Other work will include further observation and study of the quartz

the main geological interpretations and future drilling areas, provided

veining, alteration, structure and lithology to further understand

this information is not commercially sensitive.

controls to mineralisation and application of that understanding to

refine further exploration along the 14 km Wanderrie Supergroup

Trend in particular, and the greater Yamarna Belt more generally.

Page 36 of 53

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria and JORC Code explanation

Commentary

Database integrity

Geological metadata is stored centrally in a relational SQL database with

Measures taken to ensure that data has not been corrupted by, for

a DataShed front end. Gold Road employs a Database Manager who is

example, transcription or keying errors, between its initial collection and

responsible for the integrity and efficient use of the system. Only the

its use for Mineral Resource Estimation purposes.

Database Manager or their Data Entry Clerk has permission to modify the

data.

Sampling and geological logging data is collected in the field using

LogChief software and uploaded digitally. The software utilises lookup

tables, fixed formatting and validation routines to ensure data integrity

prior to upload to the central database.

Sampling data is sent to, and received from, the assay laboratory in digital

format.

Drill hole collars are picked up by differential GPS (DGPS) and delivered

to the database in digital format.

Down hole surveys are delivered to the database in digital format.

The Mineral Resource estimate utilises only Gold Road RC and DDH assay

data.

Data validation procedures used.

DataShed software has validation procedures that include constraints,

library tables, triggers and stored procedures. Data that does not pass

validation tests must be corrected before upload.

The LogChief software utilises lookup tables, fixed formatting and

validation routines to ensure data integrity prior to upload to the central

database. Geological logging data is checked visually in three dimensions

against the existing data and geological interpretation.

Gold Road utilises QAQCR software to analyse QAQC data, and batches

which do not meet pass criteria are requested to be re‐assayed. Sample

grades are checked visually in three dimensions against the logged

geology and geological interpretation.

Drill hole collar pickups are checked against planned and/or actual collar

locations.

A hierarchical system is used to identify the most reliable down hole

survey data. Drill hole traces are checked visually in three dimensions.

The project geologist and resource geologist are responsible for

interpreting the down hole surveys to produce accurate drill hole traces.

Site visits

Justin Osborne is one of the Competent Persons and is Gold Road's

Comment on any site visits undertaken by the Competent Person and the

Executive Director. He conducts regular site visits and is responsible for

outcome of those visits.

all aspects of the project.

John Donaldson is Gold Road's Principal

If no site visits have been undertaken indicate why this is the case

Resource Geologist and a Competent Person. He has completed specific

site visits to focus on understanding the geology of the Project.

Jane Levett is the second Competent Person and is Gold Road's Principal

Resource Geologist. She conducts regular specific site visits to focus on

understanding the geology as it is revealed in the drilling data.

Communication with the site geologists is key to ensuring the latest

geological interpretations are incorporated into the resource models.

Both Competent Persons contribute to the continuous improvement of

sampling and logging practices and procedures.

Geological interpretation

Significant amounts of diamond drilling into the Gilmour Deposit has

Confidence in (or conversely, the uncertainty of) the geological

allowed for the early establishment of regional stratigraphy and

interpretation of the mineral deposit.

alteration associated with

mineralisation. The collection of detailed

structural data from oriented diamond core and Orexplore scans has

given insight into geological and grade trends that have been confirmed

with geostatistical and spatial analysis (variography).

Other sources of data (see next commentary) have also added

confidence to the geological interpretation, in particular quantitative

pXRF data has been key in delineating the base of Transported cover and

top of Archean, and in highlighting key lithological units.

The location of lithologies at Gilmour is highly predictable.

Nature of the data used and of any assumptions made.

All available data has been used to help build the geological

interpretation. This includes geological logging data (lithology and

structure), gold assay data (RC and DDH), portable XRF and 4AD multi‐

element data (laboratory), geophysics (airborne magnetics), and

Orexplore scans.

Page 37 of 53

Criteria and JORC Code explanation

Commentary

The effect, if any, of alternative interpretations on Mineral Resource

Alternate interpretations have been considered for the main shear

Estimation.

(laminated vein and proximal halo) and folded vein domains the

differences between these, and the current interpretation are minimal.

The current interpretation has been developed in conjunction with site

geologists as drilling progresses, and with utilisation of new technologies

(Orexplore). This current interpretation has been found to be highly

predictable with respect to infill drilling.

The use of geology in guiding and controlling Mineral Resource

The Gilmour deposit is located in the central‐western part of the Yamarna

Estimation.

Greenstone Belt within the Wanderrie Camp Scale Target in the Toppin

Hill tectonostratigraphic group. Gilmour is associated with the

Supergroup Trend, the southern extension of the second order Golden

Highway Shear Zone that hosts the Attila‐Alaric group of deposits. Gold

mineralisation is hosted within an east‐dipping laminated quartz vein

bound by the Waters Fault to the north and Pink Fault to the south. A

summary description of the geology and main geological controls as

currently interpreted is provided below:

1. Vein‐hosted Gold mineralisation at Gilmour is hosted in the lower

part of a highly strained moderately east‐dipping matrix supported

polymictic conglomerate sequence. The conglomerate forms the

basal unit of the Toppin Hill Mid Conglomerate Formation, which

also includes zones of well bedded sandstones, volcaniclastics and

interbeds of shales having increased mafic derived content that can

be identified by the presence of garnet porphyroblasts and

amphibole. The Toppin Hill Mid Conglomerate is conformably

underlain by the Toppin Hill Lower Sandstone formation that is

dominated by a coarse quartz‐feldspar grit that is interpreted to be

a felsic volcaniclastic.

2. The stratigraphy in the Gilmour area has been affected by early

ductile deformation and by several later normal brittle events. The

sedimentary sequence has undergone significant layer parallel

shortening that does not display a consistent kinematic indicator.

The shortening is evidenced by very flattened conglomerate pebbles

and cobbles, and strongly folded quartz veins where veins cross‐cut

bedding.

3.

The Waters Fault is an east‐west trending (bearing 240°) normal fault

with a down thrown northern block. The Waters Fault is part of a

much larger long lived east‐west striking fault complex that includes

the Rocha Fault to the north. Bedding and veining have been

dragged into the Waters Fault from the typical shallow easterly dip

to a steeply north‐east dipping orientation. The fault displays

evidence of Archaean and Proterozoic displacement and brecciation,

with the fault zones commonly intruded by xenolithic Proterozoic

Dykes.

4. The bulk of the Gilmour mineralisation is hosted in a continuous

high‐grade laminated quartz vein that is conformable to

stratigraphy and located at the base of, or immediately below a more

mafic interbed within the polymictic conglomerate. The laminated

vein ranges from 0.5 m wide to 2 m wide and can be as thin as 0.2 m

away from the constrained resource. Other thin laminated veins are

present in the footwall (footwall vein) and hanging wall, though do

not display the continuity or thickness of the main laminated vein. A

population of thin folded laminated veins occur primarily in the

hangingwall to the main laminated vein, these originally crosscut the

bedding and have been subsequently folded during the layer‐parallel

shortening event.

5. To the north of the Waters Fault the gold mineralisation is offset

approximately 700 metres west and is of reduced tenor, more

commonly manifesting as a sulphidated shear within the Toppin Hill

Lower Sandstone formation. It is thought that the Waters Fault

played an integral part in generating the dilation during the episodic

deformation that formed the laminated quartz vein and limits the

northern extents of the economic mineralisation. To the south the

Pink Fault, with an apparent dextral offset, controls the southern

extent of well‐developed laminated veining.

6.

Alteration (proximal halo) around the mineralised veining comprises

muscovite + pyrite ± albite ± biotite. The extent of observed

alteration is generally constrained to only a few to 10's of

centimetres either side of vein margins but can be up to 5 metres

wide.

Page 38 of 53

Criteria and JORC Code explanation

Commentary

7. The Archean basement is weathered to depth of 80 to 90 metres

below surface, increasing to greater than 100 metres in areas of fault

complexity associated with the Waters Fault Zone. The regolith

profile is generally stripped to the deeply weathered upper saprolite

zone, in general, which is depleted of gold due to leaching and forms

the upper domain boundary to mineralisation.

The factors affecting continuity both of grade and geology.

Apart from the controls discussed previously, one narrow (1 to 5 m wide),

steeply dipping non‐mineralised internal mafic dyke has been modelled

as barren cross‐cutting the mineralisation. Several other Proterozoic

dykes are observed in association with the Waters Fault surfaces, and are

also modelled as such to stope out mineralisation.

Dimensions

Length along strike: 400 m (pit shell constraint)

The extent and variability of the Mineral Resource expressed as length

Horizontal Width: 3‐5 m (laminated vein and proximal halo). 10 ‐ 15 m

(along strike or otherwise), plan width, and depth below surface to the

(folded veins).

upper and lower limits of the Mineral Resource.

Depth from surface to limit of Mineral Resource: 350 m.

Gilmour is potentially an open pit and underground mining proposition.

Gilmour Open Pit Mineral Resource

The Gilmour Open Pit Mineral Resource has been constrained by an

optimised Whittle shell that considers all Indicated and Inferred

mineralisation in the geological model. Only Indicated and Inferred

categories within this shell are reported as Mineral Resource.

Mineralisation in the geology model outside the shell is not reported.

The length of mineralisation along strike is 400 m (pit shell constraint)

and the horizontal width is approximately 70 m comprising the high‐

grade laminated vein (0.5 m to 5.0 m wide) and a series of thin folded

hanging wall vein sets (5.0 m to 15.0 m wide.)

The depth from surface to the limit of the Gilmour Open Pit Mineral

Resource is 150 m.

The Mineral Resource has been constrained by an optimised Whittle shell

that considers all Indicated and Inferred mineralisation in the geological

model. The optimisation assumes mining and geotechnical parameters

established for the near‐by Golden Highway projects and assumes ore

will be trucked to and processed at the Gruyere mill via a toll treatment

agreement. The optimisation was run at a gold price of A$1,850/oz. Only

Indicated and Inferred categories within this shell are reported as

Mineral Resource. Mineralisation in the geology model outside the shell

is not reported.

Gilmour Underground Mineral Resource

The Gilmour Underground Mineral Resource has been constrained by a

mineable shape optimiser (MSO) process that considers Indicated and

Inferred mineralisation in the geological model and external to the

Gilmour Open Pit Mineral Resource.

The underground mineral resource is limited to mineralisation contained

within the high‐grade laminated vein. The mineralisation is steeply

dipping (approx. 55o) and ranges between 2.5 m and 5.0 m wide. The

Underground Mineral Resource is continuous over a strike length of 460

m and extends to a depth approximately 200 m below the base of the

Open Pit Mineral Resource (350 m below surface).

The MSO process utilises a minimum mining width of 2.5m and a cut‐off

grade of 3.5 g/t which is considered appropriate for an underground

mineral resource of these dimensions and is reflective of a A$1,850/oz

gold price. Only Indicated and Inferred categories within the MSO shapes

and external to the open pit resource are reported as underground

mineral resource.

Page 39 of 53

Criteria and JORC Code explanation

Commentary

Estimation and modelling techniques.

Software used:

The nature and appropriateness of the estimation technique(s) applied

DataShed - frontend to SQL database

and key assumptions, including treatment of extreme grade values,

Leapfrog Geo - Drill hole validation, structural analysis and

domaining, interpolation parameters and maximum distance of

stereonets, material type, lithology, alteration and faulting

extrapolation from data points. If a computer assisted estimation

wireframes, domaining and mineralisation wireframes, geophysics

method was chosen include a description of computer software and

and regional geology

parameters used.

Snowden Supervisor ‐ geostatistics, variography, declustering,

kriging neighbourhood analysis (KNA), validation

Datamine Studio RM - Drill hole validation, cross‐section, plan and

long‐section plotting, block modelling, geostatistics, quantitative

kriging neighbourhood analysis (QKNA), OK estimation, block model

validation, classification, and reporting.

Block model and estimation parameters:

Treatment of extreme grade values - Top‐cuts (all samples included

method) were applied to 1 m composites selected within

mineralisation wireframes. The top‐cut level was determined

through the analysis of histograms, log histograms, log probability

plots and spatial analysis.

Main high grade domain ‐ one sample was cut using a 100 g/t top‐

cut resulting in a 1.6% reduction in mean grade.

Estimation technique for all mineralised domains - Ordinary Kriging

‐ This is considered the most appropriate method with respect to

the observed continuity of mineralisation, spatial analysis

(variography) and dimensions of the domains defined by drilling.

Kriging Neighbourhood Analysis was undertaken to optimise the

search neighbourhood used for the estimation and to test the

parent block size. The search ellipse and selected samples by block

were viewed in three dimensions to verify the parameters.

Model rotation - to parallel the strike and dip of mineralisation

(330° and 55° respectively)

Parent block size for estimation of gold grades by OK ‐ 25 mX by 25

mY by 5 mZ (parent cell estimation with full subset of points).

Smallest sub‐cell - 1.25 mX by 5 mY by 0.2 mZ (a small Z dimension

was required to fill the laminated vein).

Parent cell discretisation ‐ 3 X by 5 Y by 2 Z (using the number of

points method)

Search ellipse - aligned to mineralisation trend, dimensions;

250 mX by 280 mY by 30 mZ (plane of mineralisation)

Number of samples:

maximum per drill hole = 6, first search 12 min / 30 max,

second search 10 min / 30 max and a volume factor of 2, third

search 3 min / 30 max with a volume factor of 4

Maximum distance of extrapolation from data points - 50 m from

sample data to Inferred boundary

Domain boundary conditions - Hard boundaries are applied at all domain

boundaries, except for a sub‐domain on the main high grade vein (2500)

which accounts for the strike change in association with the Waters Fault.

Hard boundary application confirmed by geology and geostatistics.

The availability of check estimates, previous estimates and/or mine

Several internal models were produced prior to the publication of this

production records and whether the Mineral Resource estimate takes

Maiden Mineral Resource. These were used to plan drilling programs,

appropriate account of such data.

manage performance and expectation and test geological interpretation

on an ongoing basis during and after the various drilling campaigns.

Analysis shows that this model has performed well globally and locally

against the original internal models.

There is no previous production.

The assumptions made regarding recovery of by‐products.

No assumptions are made on recovery of by‐products.

Estimation of deleterious elements or other non‐grade variables of

No deleterious elements have been considered or estimated for this

economic significance (eg sulphur for acid mine drainage

deposit.

characterisation).

In the case of block model interpolation, the block size in relation to the

For Indicated (Ordinary Kriged estimate).

average sample spacing and the search employed.

The parent block size of 25 mX by 25 mY is approximately 25% of the

maximum drill spacing of 50 mX by 50 mY

Any assumptions behind modelling of selective mining units.

No Selective Mining Units were assumed in this estimate.

Any assumptions about correlation between variables.

No correlation between variables analysed or made; the resource is gold‐

only.

Description of how the geological interpretation was used to control the

The geological interpretation was used at all stages to control the

resource estimates.

estimation. If geostatistics, variography and/or visual checks of the

model were difficult to interpret then the geological interpretation was

questioned and refined

Page 40 of 53

Criteria and JORC Code explanation

Commentary

Discussion of basis for using or not using grade cutting or capping.

Top‐cuts were used in the estimate as this is the most appropriate way

to control outliers when estimating block grades from assay data

The process of validation, the checking process used, the comparison of

The following validation checks were performed:

model data to drill hole data, and use of reconciliation data if available.

QQ plots of RC vs DDH input grades.

Comparison of twinned RC v DDH holes.

Comparison of the volume of wireframe vs the volume of block

model.

Checks on the sum of gram metres prior to compositing vs the sum

of gram metres post compositing

A negative gold grade check

Comparison of the model average grade and the declustered

sample grade by Domain.

Generation of swath plots by Domain, northing and elevation.

Visual check of drill data vs model data in plan, section and three

dimensions.

Comparison to previous models

Comparison to alternative interpretations (see above)

All validation checks gave suitable results. There has been no mining so

no reconciliation data available.

Moisture

Bulk density values used are a combination of local and regional data.

Whether the tonnages are estimated on a dry basis or with natural

Average bulk density values are modified by a moisture percentage so

moisture, and the method of determination of the moisture content.

that dry tonnages are reported. Percentage reductions were: overburden

and saprolite 5%, saprock 3%, transition 2% and fresh 1 %.

Cut‐off parameters

Gilmour Open Pit Mineral Resource

The basis of the adopted cut‐off grade(s) or quality parameters applied.

The cut‐off grade used for reporting the Gilmour Open Pit Mineral

Resource is 0.5 g/t and has been determined with due consideration to

processing and surface haulage costs, metallurgical recovery, royalties

and gold price.

Gilmour Underground Mineral Resource

The cut‐off grade used for reporting Gilmour Underground Mineral

Resources is 3.50 g/t. The cut‐off grade (COG) is determined using a

A$1,850/oz gold price and 94% metallurgical recovery. Costs

incorporated in the COG calculation are derived from various case studies

of narrow open stoping operations of similar dimensions to Gilmour. The

COG considers all directly incurred costs involved in the development and

extraction of the ore panel (e.g., drill & blast, load and haul, surface

haulage, processing and administration costs, sustaining capital, refining

and royalties on sales.). The COG does not include capital development

or fixed costs (i.e., costs not directly associated with extraction,

processing and selling gold).

Mining factors or assumptions

Gilmour Open Pit Mineral Resource

Assumptions made regarding possible mining methods, minimum mining

The Gilmour Open Pit Mineral Resource assumes conventional open pit

dimensions and internal (or, if applicable, external) mining dilution. It is

mining utilising a contract mining fleet appropriately scaled to the size of

always necessary as part of the process of determining reasonable

the deposit.

prospects for eventual economic extraction to consider potential mining

De facto minimum mining width is a function of the geology model with

methods, but the assumptions made regarding mining methods and

a minimum mineralisation width of 2 m.

parameters when estimating Mineral Resources may not always be

No allowance for dilution or recovery has been made.

rigorous. Where this is the case, this should be reported with an

Gilmour Underground Mineral Resource

explanation of the basis of the mining assumptions made.

It is assumed that the Gilmour Underground Mineral Resource will be

mined utilising narrow underground long hole open stoping methods

with 15 m level access horizons. 'Mineable Shape Optimiser' (MSO)

software was utilised to constrain the Mineral Resource in order to

determine that there are reasonable prospects for eventual economic

extraction and generate optimal mining shapes based on a 2.5 m

minimum mining width, and an appropriately costed cut‐off grade of

3.5g/t at a A$1,850/oz gold price. The Mineral Resource reported is the

Indicated & Inferred material within the MSO shape generated.

Metallurgical factors or assumptions

Potential ore extracted from Gilmour could be processed at the

The basis for assumptions or predictions regarding metallurgical

neighbouring Gruyere Mine process plant via a toll treatment agreement.

amenability. It is always necessary as part of the process of determining

Preliminary metallurgical test work indicates high gold extraction is

reasonable prospects for eventual economic extraction to consider

possible with mineralisation amenable to gravity recovery and

potential metallurgical methods, but the assumptions regarding

conventional cyanidation. Recovery ranges between 89% and 98% from

metallurgical treatment processes and parameters made when reporting

the 5 samples tested at a 125 µm grind size. The recovery applied to

Mineral Resources may not always be rigorous. Where this is the case,

calculate the cut‐off grades constraining the Mineral Resource shapes is

this should be reported with an explanation of the basis of the

94%.

metallurgical assumptions made.

Page 41 of 53

Criteria and JORC Code explanation

Commentary

Environmental factors or assumptions

Surface waste dumps will be used to store waste material from both open

Assumptions made regarding possible waste and process residue

pit and underground mining.

disposal options. It is always necessary as part of the process of

Potential ore extracted from Gilmour could be processed at the

determining reasonable prospects for eventual economic extraction to

neighbouring Gruyere Mine process plant via a toll treatment agreement.

consider the potential environmental impacts of the mining and

A conventional tailings storage facility at the Gruyere processing plant

processing operation. While at this stage the determination of potential

will be utilised for tailings disposal.

environmental impacts, particularly for a greenfields project, may not

No test work has been completed regarding potential acid mine drainage

always be well advanced, the status of early consideration of these

from various material types, however, if identified in future studies

potential environmental impacts should be reported. Where these

appropriate measures will be used to manage any issues.

aspects have not been considered this should be reported with an

explanation of the environmental assumptions made.

Bulk density

Bulk density has been determined using data available from the Gilmour

Whether assumed or determined. If assumed, the basis for the

diamond drilling, where data populations were limited for particular

assumptions. If determined, the method used, whether wet or dry, the

material types, eg sand, Proterozoic dykes, other bulk density data in the

frequency of the measurements, the nature, size and representativeness

region were considered. All density was collected using the weight in air

of the samples.

/ weight method.

The bulk density for bulk material must have been measured by methods

Bulk density is applied by weathering (material) type.

that adequately account for void spaces (vugs, porosity, etc), moisture

and differences between rock and alteration zones within the deposit.

Discuss assumptions for bulk density estimates used in the evaluation

Data was coded by weathering type (material) and domain

process of the different materials.

(mineralisation). Assumptions for moisture percentages were made and

accounted for in the final value used for bulk density.

Classification

The Mineral Resource is constrained within a Lerch‐Grossman Whittle

The basis for the classification of the Mineral Resources into varying

shell and MSO stopes. Blocks in the geological model above/inside these

confidence categories.

shells/stopes have been classified as Indicated and Inferred. Several

factors have been used in combination to aid the classification;

Drill hole spacing

Indicated - 50 m East by 50 m North. Depth of drilling and 50 m

along strike from extent of drilling. Extrapolation 25 m down

dip from last drill hole intercept

Inferred - 50 m East by 100 m North. Depth of drilling and 50 m

along strike from extent of drilling. Extrapolation 25 m down

dip from last drill hole intercept

Geological continuity

Grade continuity

Estimation quality parameters derived from the Ordinary Kriging process

Whether appropriate account has been taken of all relevant factors (ie

All relevant factors have been taken into account in the classification of

relative confidence in tonnage/grade estimations, reliability of input

the Mineral Resource.

data, confidence in continuity of geology and metal values, quality,

quantity and distribution of the data).

Whether the result appropriately reflects the Competent Person's view of

The Mineral Resource estimate appropriately reflects the Competent

the deposit.

Persons' view of the deposit.

Audits or reviews

Internal geological peer reviews were held and documented.

The results of any audits or reviews of Mineral Resource estimates.

Discussion of relative accuracy/ confidence

Where appropriate a statement of the relative accuracy and confidence

Variances to the tonnage, grade and metal of the Mineral Resource

level in the Mineral Resource estimate using an approach or procedure

estimate are expected with further definition drilling. It is the opinion of

deemed appropriate by the Competent Person. For example, the

the Competent Persons that these variances will not significantly affect

application of statistical or geostatistical procedures to quantify the

economic extraction of the deposit.

relative accuracy of the resource within stated confidence limits, or, if

such an approach is not deemed appropriate, a qualitative discussion of

the factors that could affect the relative accuracy and confidence of the

estimate.

The statement should specify whether it relates to global or local

The Mineral Resource relates to global tonnage and grade estimates.

estimates, and, if local, state the relevant tonnages, which should be

relevant to technical and economic evaluation. Documentation should

include assumptions made and the procedures used.

These statements of relative accuracy and confidence of the estimate

No previous mining.

should be compared with production data, where available.

Page 42 of 53

Renegade

JORC CODE 2012 EDITION TABLE 1 - SECTIONS 1 TO 3

Section 1 Sampling Techniques and Data

Criteria and JORC Code explanation

Commentary

Sampling techniques

The sampling has been carried out using a combination of Reverse Circulation

Nature and quality of sampling (eg cut channels, random chips, or

(RC) and diamond drilling. Significant RAB and Aircore drilling covers the

specific specialised industry standard measurement tools

project area and is used in developing the lithological and mineralisation

appropriate to the minerals under investigation, such as down

interpretation.

However, this data is not used in the estimate and is not

hole gamma sondes, or handheld XRF instruments, etc). These

detailed here.

Drilling was completed between 1994 and 2017 and was

examples should not be taken as limiting the broad meaning of

undertaken by several different companies:

sampling.

1994‐1997 Zanex NL

1997‐2006 Asarco Exploration Company Inc

2006‐2010 Eleckra Mines Limited (renamed Gold Road in 2010)

2010‐Present Gold Road Resources

137 RC and 4 Diamond holes were drilled angled at orientations of ‐60° to 090°

and ‐90° degrees to 000° azimuth (Attila Grid). Two diamond holes were drilled

angled at ‐60° degrees to 070° degrees azimuth (Attila Grid).

Drill core is logged geologically and marked up for assay at approximately 1

metre intervals based on geological observation. Drill core is cut in half by a

diamond saw and half core samples submitted for assay analysis. RC chips are

logged geologically, and four‐metre composite spear samples are submitted

for assay. One metre RC split samples are submitted for re‐assay if composites

return anomalous results.

Include reference to measures taken to ensure sample

After 2010 sampling was carried out under Gold Road's protocols and QAQC

representation and the appropriate calibration of any

procedures as per industry best practice. Prior to 2010, sampling was carried

measurement tools or systems used.

out under the relevant company's protocols and procedures and is assumed

to be industry standard practice for the time. Specific details for this historical

drilling are not readily available.

Aspects of the determination of mineralisation that are Material to

Details regarding sampling prior to 2010 are not readily available. Sampling

the Public Report.

under Gold Road's protocols comprises the following:

In cases where 'industry standard' work has been done this would

RC holes were drilled with a 5.25"or 5.75" inch face‐sampling bit, 1 m samples

be relatively simple (eg 'reverse circulation drilling was used to

collected through a cyclone and riffle splitter, to form a 2‐3 kg sample. 4 m

obtain 1 m samples from which 3 kg was pulverised to produce a

composite samples were created by spear sampling of the total reject of the

30 g charge for fire assay'). In other cases, more explanation may

1 m samples collected in large plastic bag from the drilling rig and deposited

be required, such as where there is coarse gold that has inherent

into separate numbered calico bags for sample despatch. One metre sample

sampling problems. Unusual commodities or mineralisation types

intervals were submitted for analysis when the composite interval returned

(eg submarine nodules) may warrant disclosure of detailed

anomalous results. A total of 15 (<1%) 4 m composite samples were used in

information.

the resource estimate where no 1 m samples were available.

DDH drilling was completed using an HQ or NQ drilling bit for all holes. Core

is cut in half for sampling, with a half core sample sent for assay at measured

lithological/mineralogical intervals. All samples were fully pulverised at the

lab to ‐75 µm, to produce a 50 g charge for Fire Assay with either AAS finish or

ICPOES finish.

Drilling techniques

RC drilling rigs were used to collect the RC samples. The face‐sampling RC bit

Drill type (eg core, reverse circulation, open‐hole hammer, rotary

has a diameter of 5.25"or 5.75" inches.

air blast, auger, Bangka, sonic, etc) and details (eg core diameter,

Diamond drilling rigs operated by Terra Drilling Pty Ltd and DDH1 collected the

triple or standard tube, depth of diamond tails, face‐sampling bit

diamond core as NQ or HQ size. Core is oriented using downhole Reflex

or other type, whether core is oriented and if so, by what method,

surveying tools, with orientation marks provided after each drill run.

etc).

Drill sample recovery

Most RC samples were dry. Drill operators endeavoured to ensure that water

Method of recording and assessing core and chip sample

was lifted from the face of the hole at each rod change to ensure that water

recoveries and results assessed.

did

not interfere with drilling and that samples were collected dry. RC

recoveries were visually estimated, and recoveries were recorded in the log as

a percentage. Recovery of the samples was good, generally estimated to be

close to 100%, except for some sample loss at the top of the hole.

All diamond core collected is dry. Drill operators measure core recoveries for

every drill run completed using a 3 m core barrel. The core recovered is

physically measured by tape measure and the length recovered is recorded for

every 3 m "run". Core recovery is calculated as a percentage recovery. Close

to 100% recoveries were achieved for most of the diamond drilling completed

at Renegade.

Page 43 of 53

Criteria and JORC Code explanation

Commentary

Measures taken to maximise sample recovery and ensure

RC face‐sample bits and dust suppression were used to minimise sample loss.

representative nature of the samples.

Drilling pressure airlifted the water column above the bottom of the hole to

ensure dry sampling. RC samples are collected through a cyclone and riffle

splitter (historical) and static cone splitter for RC after 2014. The rejects are

deposited in a large plastic bag and retained for potential future use. The

sample required for assay is collected directly into a calico sample bag at a

designed 3 to 4 kg sample mass which is optimal for full sample crushing and

pulverisation at the assay laboratory.

Diamond drilling collects

uncontaminated fresh core samples which are cleaned at the drill site to

remove drilling fluids and cuttings to present clean core for logging and

sampling. Protocols for drilling undertaken prior to 2006 are not readily

available.

Whether a relationship exists between sample recovery and grade

Except for a small sample population (<1%) all RC samples were collected dry.

and whether sample bias may have occurred due to preferential

Sample loss was minimal throughout the progression of drilling. Renegade

loss/gain of fine/coarse material.

contains a stripped profile and therefore does not require much hole

conditioning before entering competent ground. There is no significant loss of

material reported in any of the Diamond core.

Logging

All chips and drill core were geologically logged, using the relevant companies

Whether core and chip samples have been geologically and

logging scheme. These logging codes have been developed over time and the

geotechnically logged to a level of detail to support appropriate

historical codes translated to a scheme similar to the current Gold Road

Mineral Resource estimation, mining studies and metallurgical

logging scheme in 2007. This provides data to a level of detail adequate to

studies.

support Mineral Resource Estimation activities. Some holes are logged using

handheld NITON XRF to assist in lithogeochemical analysis. From 2016 most

Fire Assay results routinely include pXRF collected at the laboratory and used

to validate logging.

Whether logging is qualitative or quantitative in nature. Core (or

Logging of RC chips records lithology, mineralogy, mineralisation, weathering,

costean, channel, etc) photography.

colour and other features of the samples.

All samples are wet‐sieved and

stored in a chip tray.

Logging of drill core records lithology, mineralogy, mineralisation, weathering,

colour and other features of the samples, along with structural information

from oriented drill core. All samples are stored in core trays.

All core is photographed in the trays, with individual photographs taken of

each tray both dry, and wet; all photos are uploaded to and stored on the Gold

Road server database.

The total length and percentage of the relevant intersections

All holes were logged in full.

logged

Sub‐sampling techniques and sample preparation

Core samples were cut in half using an automated Corewise diamond saw.

If core, whether cut or sawn and whether quarter, half or all core

Half core samples were collected for assay, and the remaining half core

taken.

samples are stored in the core trays.

If non‐core, whether riffled, tube sampled, rotary split, etc and

1 metre RC drill samples are collected via a cone‐splitter, installed directly

whether sampled wet or dry.

below a rig mounted cyclone, and an average 2‐3 kg sample is collected in an

unnumbered calico bag, and positioned on top of the plastic bag. >99% of

samples were collected dry (dry to slightly damp).

4 m composite samples were created by spear sampling of the total 1 m

samples collected in large plastic bag from the drilling rig and deposited into

separate numbered calico bags for sample despatch. Several RC holes utilised

4 m composite samples. 15 composite sample assays were used in this Mineral

Resource Estimate.

For all sample types, the nature, quality and appropriateness of

Samples were prepared and analysed at a variety of laboratories. For data

the sample preparation technique.

prior to 2006 it is assumed the procedures undertaken are industry standard

for the time. Post 2006 samples were dried, and the whole sample pulverised

to 80% passing 75 µm, and a sub‐sample of approx. 200 g retained. A nominal

50 g was used for the Fire Assay analysis. The procedure is industry standard

for this type of sample.

Quality control procedures adopted for all sub‐sampling stages to

Details of historical QAQC procedures are not readily available. Reviews of

maximise representation of samples.

QAQC and assay quality in 2002 (Golder Associates) and 2012 (Maxwell)

indicate there are no significant issues with regards to quality of the historical

assay data. Concerns regarding historical drilling are mitigated by drilling

completed in 2011, 2012 and 2016. A QAQC report has been compiled for the

2016 drilling (Sauter Geological Services) - no significant issues were

identified. A duplicate RC field sample is taken from the cone splitter at the

same time as the primary sample a rate of approximately 1 in 40 samples. A

twinned half core sample is taken at a frequency of 1 in 40 samples, with one

half representing the primary result and the second half representing a

twinned result.

At the laboratory, regular laboratory‐generated repeats and check samples are

assayed, along with laboratory insertion of its own standards and blanks.

Page 44 of 53

Criteria and JORC Code explanation

Commentary

Measures taken to ensure that the sampling is representative of

Gold Road protocols state duplicate samples are collected at a frequency of

the in situ material collected, including for instance results for field

1:40 for all drill holes. RC duplicate samples are collected directly from the

duplicate/second‐half sampling.

Rig‐mounted cone splitter.

Details of historical duplicate sampling are not

readily available

Whether sample sizes are appropriate to the grain size of the

Sample sizes are considered appropriate to give an indication of mineralisation

material being sampled.

given the particle size and the preference to keep the sample weight below a

targeted 3 kg mass which is the optimal weight to ensure the requisite grind

size in the LM5 sample mills used by Intertek in sample preparation.

Quality of assay data and laboratory tests

Samples were analysed at a variety of laboratories using methodologies that

The nature, quality and appropriateness of the assaying and

include:

laboratory procedures used and whether the technique is

Analysis Type

Total

considered partial or total.

Aqua Regia, AAS finish

242

Aqua Regia, GAAS finish

322

Fire Assay, flame AAS finish.

216

Fire Assay. Finish by ICP‐ES

2950

Fire Assay 50g, AAS finish.

2547

Laboratories used include:

SGS - Kalgoorlie, Perth and Leonora

Amdel - Perth

Genalysis - Perth

It is assumed laboratory procedures were appropriate for the time.

For geophysical tools, spectrometers, handheld XRF instruments,

NITON handheld XRF was used on a small number of drill holes. Calibration of

etc, the parameters used in determining the analysis including

the hand‐held XRF tools is applied at start‐up. XRF results are only used for

instrument make and model, reading times, calibrations factors

indicative analysis of lithogeochemistry and alteration and to aid logging and

applied and their derivation, etc.

subsequent interpretation.

Nature of quality control procedures adopted (eg standards,

The Gold Road current protocol for RC programs is for Field Standards

blanks, duplicates, external laboratory checks) and whether

(Certified Reference Materials) and Blanks to be inserted at a rate of 4

acceptable levels of accuracy (ie lack of bias) and precision have

Standards and 4 Blanks per 100 samples. Historically, standards and blanks

been established.

were inserted at a rate of 3 in 100 samples. RC Field Duplicates are generally

inserted at a rate of approximately 1 in 40. Regular DDH Field Twin sampling

was stopped in 2017. Samples are processed at Intertek laboratories, where

regular assay Repeats, Laboratory Standards, Checks and Blanks are inserted

and analysed in addition to the blind Gold Road QAQC samples.

Results of the Field and Laboratory QAQC assays were checked on assay

receipt using QAQCR software. All assays passed QAQC protocols, showing

acceptable levels of contamination or sample bias, including diamond half core

v. half core Field Twins.

Assay and QAQC Numbers

RC

DDH

Total Sample Submission

5,606

1,186

Assays

5,166

1,116

Field Blanks

116

35

Field Standards

258

35

Field Duplicates

66

49

Laboratory Blanks

87

39

Laboratory Checks

155

52

Laboratory Standards

196

1,186

Historical drilling QAQC has been reviewed by Maxwell (2012) and Golder

Associates (2002) and deemed satisfactory and fit for use in Resource

Estimation. Infill drilling completed in 2011, 2012 and 2016 by Gold Road has

allowed comparative reviews (twinned holes) to be undertaken which have

mitigated many concerns with respect to historical data quality.

Verification of sampling and assaying

Significant results were compiled by the Database Manager and reported for

The verification of significant intersections by either independent

release by the Exploration Manager/Executive Director. Data was routinely

or alternative company personnel.

checked by the Senior Exploration and Project Geologist, Principal Resource

Geologist or Consulting Geologists during drilling programs.

All results have been reported in previous ASX announcements and are listed

in Appendix 2.

The use of twinned holes.

A number of close spaced RC vs RC holes, with 10 to 15 metres separation,

have been drilled confirm the location and thickness of mineralisation, and to

an extent the tenor of grade.

Documentation of primary data, data entry procedures, data

All recent field logging is carried out on Tough books using LogChief data

verification, data storage (physical and electronic) protocols.

capture software. Logging data is submitted electronically to the Database

Geologist in the Perth office. Assay files are received electronically from the

Laboratory. All data is stored in a Datashed/SQL database system and

maintained by the Gold Road Database Manager.

Discuss any adjustment to assay data.

No assay data was adjusted. The laboratory's primary Au field is the one used

for plotting and resource purposes. No averaging is employed.

Page 45 of 53

Criteria and JORC Code explanation

Commentary

Location of data points

The drill hole locations were initially picked up by handheld GPS, with an

Accuracy and quality of surveys used to locate drill holes (collar

accuracy of 5 m in northing and easting. All RC and DDH holes were later picked

and down‐hole surveys), trenches, mine workings and other

using DGPS to a level of accuracy of 1 cm in elevation and position.

locations used in Mineral Resource estimation.

For angled drill holes, the drill rig mast is set up using a clinometer, and rigs

aligned by surveyed positions and/or compass.

Drillers use an electronic single‐shot camera to take dip and azimuth readings

inside the stainless‐steel rods, at 50 m intervals, prior to August 2014, and 30

m interval, post August 2014. Downhole directional surveying using north‐

seeking gyroscopic tool was completed on site and live (down drill rod string)

or after the rod string had been removed from the hole. Most diamond drill

holes were surveyed live whereas most RC holes were surveyed upon exiting

the hole.

Specification of the grid system used.

A local grid (Attila) is used at Renegade

Quality and adequacy of topographic control.

An Aerial Lidar and Imagery Survey was completed January 2016 by Trans

Wonderland Holdings as part of the ongoing FS covering 2,558 km2 over the

project area. One‐metre contours from this survey were used to construct a

new topography surface to constrain the resource model. The survey showed

good agreement with the existing DGPS drill hole collar data.

All drill holes used in the resource grade estimate have a final collars survey by

DGPS which are has a 1 cm elevation accuracy.

Data spacing and distribution

Drill spacing occurs at 50 mX by 100 mY towards the north and south extents

Data spacing for reporting of Exploration Results.

of the deposit. The central zone of the deposit has been drilled at 25 mX by

50 mY. Drill spacing in relation to Resource Classification is discussed further

in Section 3 below.

Whether the data spacing, and distribution is sufficient to

Spacing of the reported drill holes is sufficient to assume and/or imply

establish the degree of geological and grade continuity

geological and grade continuity of the deposit and is appropriate for resource

appropriate for the Mineral Resource and Ore Reserve estimation

estimation processes. Detailed description of the relationship between drill

procedure(s) and classifications applied.

spacing and Resource classification is provided in Section 3 below.

Whether sample compositing has been applied.

Samples have been composited to 1 m intervals for estimation. This is to

ensure no bias related to volume variance. 1 m represents the most common

primary sample interval.

Orientation of data in relation to geological structure

Drill sections are oriented west to east (270° to 090° Attila Grid) with the

Whether the orientation of sampling achieves unbiased sampling

majority of holes oriented approximately perpendicular to dip and strike at ‐

of possible structures and the extent to which this is known,

60° to 090°. 6 holes have been drilled in a vertical orientation, and 6 oriented

considering the deposit type.

to the west and 2 toward 070°.

If the relationship between the drilling orientation and the

The predominant drilling does not introduce any directional bias given the

orientation of key mineralised structures is considered to have

current understanding of the structural orientations and the dip and strike of

introduced a sampling bias, this should be assessed and reported if

mineralisation. Down dip holes add voracity to mineralisation continuity.

material.

These have been included in the resource, but their impact is controlled by

estimation parameters.

Sample security

Pre‐numbered calico bags are collected in plastic or poly weave bags and

The measures taken to ensure sample security.

transported to the laboratory. Details regarding sample security of drilling

prior to 2010 are not readily available.

Audits or reviews

Sampling and assaying techniques are industry‐standard. Internal and

The results of any audits or reviews of sampling techniques and

Consultant reviews of QAQC have been completed and documented.

data.

No independent laboratory or sample audits have been completed.

Page 46 of 53

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria and JORC Code explanation

Commentary

Mineral tenement and land tenure status

The Tenements is located within the Yilka Native Title Determination Area

Type, reference name/number, location and ownership including

(NNTT Number: WCD2017/005), determined on 27 September 2017.

agreements or material issues with third parties such as joint

The activity occurred within the Cosmo Newberry Reserves for the Use and

ventures, partnerships, overriding royalties, native title interests,

Benefit of Aborigines. Gold Road signed a Deed of Agreement with the Cosmo

historical sites, wilderness or national park and environmental

Newberry Aboriginal Corporation in January 2008, which governs the

settings.

exploration activities on these Reserves.

The Mineral Resource is situated within tenement E38/1388, which is owned

100% by Gold Road. The tenement is located on the Yamarna Pastoral Lease,

which is owned and managed by Gold Road.

The security of the tenure held at the time of reporting along with

The tenement is in good standing with the Western Australia Department of

any known impediments to obtaining a licence to operate in the

Mines, Infrastructure, Resource and Safety.

area.

Exploration done by other parties

Exploration has been completed at Renegade by other parties:

Acknowledgment and appraisal of exploration by other parties.

1998‐2006 Asarco Exploration Company Inc

2006‐2010 Eleckra Mines Limited (renamed Gold Road in 2010)

2010‐Present Gold Road

Gold Road understands that previous exploration has been completed to

industry standard

Geology

The Renegade Deposit comprises a broad porphyry intrusive (Renegade

Deposit type, geological setting and style of mineralisation.

Porphyry) approximately 150 m in width and which strikes over a current

known length of 1,000 m. The Renegade Porphyry dips steeply (65°‐80°

degrees) to the west. The stratigraphy is defined by the porphyry intruding

the Toppin Hill Lower basalt unit which contains a minor sequence of

intermediate to mafic volcaniclastic rocks.

Mineralisation is confined within the Renegade Porphyry and is associated

with increased shearing and pervasive albite‐biotite‐pyrite alteration which

has variably overprinted the primary texture of the rock. Minor fine quartz‐

carbonate veining occurs throughout. Pyrite is the primary sulphide mineral

and some visible gold has been observed in logged diamond drill core.

The Renegade deposit is located on the western side of the Yamarna

Greenstone Belt within the Archaean Yilgarn Craton, along strike of The

Golden Highway Shear Zone. Most of the greenstone sequence is obscured by

a veneer of Quaternary sand and lake deposits.

Drill hole Information

All relevant RC and diamond holes included in the reported resource

A summary of all information material to the understanding of the

estimation have been previously reported in AXS announcements, listed in

exploration results including a tabulation of the following

Appendix 2.

information for all Material drill holes:

easting and northing of the drill hole collar

elevation or RL (Reduced Level - elevation above sea level in

metres) of the drill hole collar

dip and azimuth of the hole

down hole length and interception depth

hole length.

If the exclusion of this information is justified on the basis that the

information is not Material and this exclusion does not detract from

the understanding of the report, the Competent Person should

clearly explain why this is the case.

Data aggregation methods

No top cuts have been applied to the reporting of the assay results.

In reporting Exploration Results, weighting averaging techniques,

Intersections lengths and grades for all holes are reported as down‐hole

maximum and/or minimum grade truncations (eg cutting of high

length‐weighted averages of grades above a cut‐off and may include up to 2 m

grades) and cut‐off grades are usually Material and should be

(cut‐offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut‐off) of grades below

stated.

that cut‐off. Cut‐offs of 0.1, 0.5, 1.0 and/or 5.0 g/t Au are used depending on

the drill type and results. Individual grades >10 g/t Au are also reported.

Note that gram.metres is the multiplication of the length (m) by the grade (g/t

Au) of the drill intersection and provides the reader with an indication of

intersection quality.

Where aggregate intercepts incorporate short lengths of high‐

Intersections lengths and grades are reported as down‐hole length‐weighted

grade results and longer lengths of low‐grade results, the procedure

averages of grades above a cut‐off and may include up to 2 m (cut‐offs of 0.3

used for such aggregation should be stated and some typical

g/t Au and higher) or 4 m (0.1 g/t Au cut‐off) of grades below that cut‐off.

examples of such aggregations should be shown in detail.

Geologically selected DDH and RC intersections are used in more advanced

stage projects. They are selected to honour interpreted thickness and grade

from the currently established geological interpretation of mineralisation and

may include varying grade lengths below the cut‐off. As a result, intersections

will differ slightly from previous announcements.

The assumptions used for any reporting of metal equivalent values

No metal equivalent values are used.

should be clearly stated.

Page 47 of 53

Criteria and JORC Code explanation

Commentary

Relationship between mineralisation widths and intercept lengths

Mineralisation is hosted within a steep west‐dipping, N‐S striking (Attila Local

These relationships are particularly important in the reporting of

Grid) porphyry. The porphyry is mineralised with the main halo, and footwall

Exploration Results.

and hangingwall shears greater than 0.1 g/t Au and the internal high grade

If the geometry of the mineralisation with respect to the drill hole

from greater than 0.6 g/t Au. Mineralisation is characterised by localised shear

angle is known, its nature should be reported.

fabrics and biotite‐albite‐pyrite alteration. Higher grade zones occur in

If it is not known and only the down hole lengths are reported, there

alteration packages characterised by strong albite‐biotite‐pyrite alteration and

should be a clear statement to this effect (eg 'down hole length, true

quartz and quartz‐carbonate veining.

width not known').

The general drill direction of ‐600 to 0900 is approximately perpendicular to the

main alteration packages and is a suitable drilling direction to avoid directional

biases.

Diagrams

Refer to Figures and Tables in the body of this and previous ASX

Appropriate maps and sections (with scales) and tabulations of

announcements.

intercepts should be included for any significant discovery being

reported. These should include, but not be limited to a plan view of

drill hole collar locations and appropriate sectional views.

Balanced reporting

All drill assay results used in this estimation of this resource have been

Where comprehensive reporting of all Exploration Results is not

published in previous ASX releases. These releases ate listed in Appendix 2

practicable, representative reporting of both low and high grades

and/or widths should be practiced to avoid misleading reporting of

Exploration Results.

Other substantive exploration data

In addition to the drilling activity, several geophysical surveys have been

Other exploration data, if meaningful and material, should be

conducted. These surveys aim to identify the geophysical signatures of known

reported including (but not limited to): geological observations;

mineralisation styles to aid further targeting and potentially directly detect

geophysical survey results; geochemical survey results; bulk

mineralisation along the Golden Highway Trends. Other exploration activities

samples - size and method of treatment; metallurgical test results;

have included re‐processing of aeromagnetic and gravity data with Fathom

bulk density, groundwater, geotechnical and rock characteristics;

Geophysics over the entire Yamarna Belt to allow more detailed interpretation

potential deleterious or contaminating substances.

of geology and further target definition. A new belt scale geological

interpretation and stratigraphic column has been completed in conjunction

with Concept to Discovery consulting as well as an inhouse

Tectonostratigraphic Map.

Historic bottle‐roll test‐work completed in 2007 indicates high recovery is

possible from conventional cyanidation

Further work

Possible extensions at depth will be tested in a strategic manner.

The nature and scale of planned further work (eg tests for lateral

extensions or depth extensions or large‐scale step‐out drilling).

Diagrams clearly highlighting the areas of possible extensions,

including the main geological interpretations and future drilling

areas, provided this information is not commercially sensitive.

Page 48 of 53

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria and JORC Code explanation

Commentary

Database integrity

Geological metadata is stored centrally in a relational SQL database with

Measures taken to ensure that data has not been corrupted by, for

a DataShed front end. Gold Road employs a Database Manager who is

example, transcription or keying errors, between its initial collection and

responsible for the integrity and efficient use of the system. Only the

its use for Mineral Resource Estimation purposes.

Database Manager or their Data Entry Clerk has permission to modify the

data.

Sampling and geological logging data is collected in the field using

LogChief software and uploaded digitally. The software utilises lookup

tables, fixed formatting and validation routines to ensure data integrity

prior to upload to the central database.

Sampling data is sent to, and received from, the assay laboratory in digital

format.

Drill hole collars are picked up by differential GPS (DGPS) and delivered

to the database in digital format.

Down hole surveys are delivered to the database in digital format.

The Mineral Resource estimate utilises both Gold Road and historic RC

and DDH assay data.

Data validation procedures used.

DataShed software has validation procedures that include constraints,

library tables, triggers and stored procedures. Data that does not pass

validation tests must be corrected before upload.

The LogChief software utilises lookup tables, fixed formatting and

validation routines to ensure data integrity prior to upload to the central

database. Geological logging data is checked visually in three dimensions

against the existing data and geological interpretation.

Gold Road utilises QAQCR software to further analyse QAQC data, and

batches which do not meet pass criteria are requested to be re‐assayed.

Sample grades are checked visually in three dimensions against the

logged geology and geological interpretation.

Drill hole collar pickups are checked against planned and/or actual collar

locations.

A hierarchical system is used to identify the most reliable down hole

survey data. Drill hole traces are checked visually in three dimensions.

The project geologist and resource geologist are responsible for

interpreting the down hole surveys to produce accurate drill hole traces.

Site visits

Justin Osborne is Gold Road's Executive Director of Exploration & Growth

Comment on any site visits undertaken by the Competent Person and the

and a Competent Person. He conducts regular site visits and covers all

outcome of those visits.

aspects of the Project. John Donaldson is Gold Road's Principal Resource

If no site visits have been undertaken indicate why this is the case

Geologist and a Competent Person. He has completed specific site visits

to focus on understanding the geology of Renegade. Jane Levett is Gold

Road's Principal Resource Geologist and a Competent Person and has

completed several specific site visits to focus on understanding the

geology of Renegade from field observations, historic diamond core and

RC chips.

Geological interpretation

Several generations of RC drilling with 4 targeted DDH holes have allowed

Confidence in (or conversely, the uncertainty of) the geological

for an updated geological interpretation of acceptable confidence. Early

interpretation of the mineral deposit.

establishment of lithology and alteration coding and detailed structural

logging has given insight into geological and grade trends that have been

confirmed with geostatistical analysis, (including variography).

Other sources of data (see next commentary) have also added

confidence to the geological interpretation.

The type and thickness of host lithology is predictable.

The footwall and hangingwall lithologies are less well known due to the

focus of drilling on mineralised units

Nature of the data used and of any assumptions made.

All available data has been used to help build the geological

interpretation. This includes geological logging data (lithology and

structure), gold assay data (RC and DDH), portable XRF multi‐element

data (Niton and laboratory), geophysics (airborne magnetics and gravity),

and Orexplore scans.

The effect, if any, of alternative interpretations on Mineral Resource

Alternate interpretations have been considered. The current

Estimation.

interpretation was developed after further interpretation and utilisation

of new technologies (Orexplore), and has been found to be the most

appropriate representation of grade and geology.

Page 49 of 53

Criteria and JORC Code explanation

Commentary

The use of geology in guiding and controlling Mineral Resource

The Renegade deposit is located in the central‐western part of the YGB,

Estimation.

within the Toppin Hill tectonostratigraphic group. The Renegade

mineralisation occurs within the northern strike extension of the Golden

Highway Shear Zone (GHSZ) that hosts the Attila‐Alaric group of deposits,

approximately 14 kilometres north of the Alaric deposit. Gold

mineralisation is hosted primarily within a weakly deformed feldspar‐

phyric porphyry unit that is situated in a more strongly deformed

volcanosedimentary package. A summary description of the interpreted

geology and main mineralisation controls is provided below:

1. Gold mineralisation at Renegade is hosted within a north‐northwest

striking, steep west‐dipping dacitic porphyry unit with a highly

strained basalt and andesite footwall and intermediate sediment

hangingwall. All lithologies form part of the Toppin Hill Lower

Formation that is characterised by mafic to intermediate

volcanosedimentary units.

2. The feldspar‐phyric porphyry (Renegade Porphyry) is a relatively

brittle and competent body located at the intersection of the

northern extension of the GHSZ and the north‐west striking Quisling

Fault. It is interpreted that the rheological contrast between the

porphyry and the country rocks in conjunction with the shear/fault

intersections resulted in initial brittle failure of the porphyry during

deformation providing dilatant sites for gold mineralisation.

3. Deformation within the porphyry is strongly partitioned and

presents as a brittle‐ductile progression of generally flat chlorite and

quartz infilled crackle breccia/stock work that coalesces into

anastomosing north‐northwest striking, steep west dipping

mineralised shears aligned with the main foliation of the GHSZ in the

area.

4. Higher grades are associated with increased density of

chlorite/biotite filled fractures and thin quartz vein (<1 cm)

stockwork. Thicker (5 to 20 centimetre) quartz and laminated quartz

veining has been modelled as a continuous internal high‐grade zone

within a proximal halo.

5. Strongest alteration manifests as albite + biotite + pyrite +

arsenopyrite ± pyrrhotite.

The factors affecting continuity both of grade and geology.

Mineralisation is constrained wholly within the Renegade porphyry.

Dimensions

Length along strike: 250 m (pit shell constraint)

The extent and variability of the Mineral Resource expressed as length

Horizontal Width: 60 m (comprising a series of 5‐10 m wide mineralised

(along strike or otherwise), plan width, and depth below surface to the

surfaces).

upper and lower limits of the Mineral Resource.

Depth from surface to limit of Mineral Resource: 120m.

The Mineral Resource has been constrained by a Lerch‐Grossman Whittle

shell that considers all Inferred mineralisation in the geological model.

The optimisation assumes mining and geotechnical parameters

established for the near‐by Golden Highway projects and assumes ore

will be trucked to and processed at the Gruyere mill via a toll treatment

agreement. The optimisation was run at a gold price of A$1,850/oz. Only

Inferred categories within this shell are reported as Mineral Resource.

Mineralisation in the geology model outside the shell is not reported.

Page 50 of 53

Criteria and JORC Code explanation

Commentary

Estimation and modelling techniques.

Software used:

The nature and appropriateness of the estimation technique(s) applied

Datashed - frontend to SQL database

and key assumptions, including treatment of extreme grade values,

Leapfrog Geo - Drill hole validation, structural analysis and

domaining, interpolation parameters and maximum distance of

stereonets, material type, lithology, alteration and faulting

extrapolation from data points. If a computer assisted estimation

wireframes, domaining and mineralisation wireframes, geophysics

method was chosen include a description of computer software and

and regional geology

parameters used.

Snowden Supervisor ‐ geostatistics, variography, declustering,

kriging neighbourhood analysis (KNA), validation

Datamine Studio RM - Drill hole validation, cross‐section, plan and

long‐section plotting, block modelling, geostatistics, quantitative

kriging neighbourhood analysis (QKNA), OK estimation, block model

validation, classification, and reporting.

Block model and estimation parameters:

Treatment of extreme grade values - Top‐cuts (all samples included

method) were applied to 1 m composites selected within

mineralisation wireframes. The top‐cut level was determined

through the analysis of histograms, log histograms, log probability

plots and spatial analysis.

Estimation technique for all mineralised domains - Ordinary Kriging

‐ This is considered the most appropriate method with respect to the

observed continuity of mineralisation, spatial analysis (variography)

and dimensions of the domains defined by drilling.

Kriging Neighbourhood Analysis was undertaken to optimise the

search neighbourhood used for the estimation and to test the parent

block size. The search ellipse and selected samples by block were

viewed in three dimensions to verify the parameters.

Local Grid utilised

Parent block size for estimation of gold grades by Ordinary Kriging ‐

25 mX by 25 mY by 10 mZ (parent cell estimation with full subset of

points).

Smallest sub‐cell - 12.5 mX by 12.5 mY by 5 mZ (a small X dimension

was required to fill the internal high grade).

Panel discretisation ‐ 3 X by 5 Y by 2 Z (using the number of points

method)

Search ellipse - aligned to mineralisation trend, dimensions;

70 m X by 180 m Y by 30 m Z. for Domain 5500

50 m X by 65 m Y by 30 m Z. For Domain 5505

Number of samples:

maximum per drill hole = 8, first search 16 min / 24 max, second

search 10 min / 30 max and a volume factor of 1, third search 3

min / 30 max with a volume factor of 4 for Domain 5500

maximum per drill hole = 3, first search 6 min / 14 max, second

search 10 min / 30 max and a volume factor of 2, third search 3

min / 30 max with a volume factor of 2 for Domain 5505

Maximum distance of extrapolation from data points - 50 m from

sample data to Inferred boundary

Domain boundary conditions - Hard boundaries are applied to all domain

boundaries. Hard boundary application confirmed by geology and

geostatistics.

The availability of check estimates, previous estimates and/or mine

The first resource was completed in 2008 to JORC 2004 guidelines and

production records and whether the Mineral Resource estimate takes

was not reported within a constraining, optimised, pit shell. The previous

appropriate account of such data.

resource of approximately 70,000 ounces was removed from the Mineral

Resources in 2015, as the Company applied greater rigour in the

evaluation and economic constraint of Mineral Resources in accordance

with JORC 2012 guidelines. Several internal models were produced prior

to the publication of this Resource. These were used to plan drilling

programs, manage performance and expectation and test geological

interpretation on an ongoing basis during and after the various drilling

campaigns. Analysis shows that this model has performed well globally

and locally against the original internal models.

There is no previous production.

The assumptions made regarding recovery of by‐products.

No assumptions are made on recovery of by‐products.

Estimation of deleterious elements or other non‐grade variables of

No deleterious elements have been considered or estimated for this

economic significance (eg sulphur for acid mine drainage

deposit.

characterisation).

In the case of block model interpolation, the block size in relation to the

For Inferred (Ordinary Kriged estimate).

average sample spacing and the search employed.

The parent block size of 25 mX by 25 mY is approximately 50% of the

maximum drill spacing of 25 mX by 50 mY.

Any assumptions behind modelling of selective mining units.

No Selective Mining Units were assumed in this estimate.

Page 51 of 53

Criteria and JORC Code explanation

Commentary

Any assumptions about correlation between variables.

No correlation between variables analysed or made; the resource is gold‐

only.

Description of how the geological interpretation was used to control the

The geological interpretation was used at all stages to control the

resource estimates.

estimation. If geostatistics, variography and/or visual checks

of the

model were difficult to interpret then the geological interpretation was

questioned and refined

Discussion of basis for using or not using grade cutting or capping.

Top‐cuts were used in the estimate as this is the most appropriate way

to control outliers when estimating block grades from assay data

The process of validation, the checking process used, the comparison of

The following validation checks were performed:

model data to drill hole data, and use of reconciliation data if available.

QQ plots of RC vs DDH input grades.

Statistical comparison of different drilling orientations including

local spot checks.

Comparison of twinned RC holes.

Comparison of the volume of wireframe vs the volume of block

model.

Checks on the sum of gram metres prior to compositing vs the sum

of gram metres post compositing

A negative gold grade check

Comparison of the model average grade and the declustered

sample grade by Domain.

Generation of swath plots by Domain, northing and elevation.

Visual check of drill data vs model data in plan, section and three

dimensions.

Comparison to previous models

Comparison to alternative interpretations (see above)

All validation checks gave suitable results. There has been no mining so

no reconciliation data available.

Moisture

Bulk density values used are a combination of local and regional data.

Whether the tonnages are estimated on a dry basis or with natural

Average bulk density values are modified by a moisture percentage so

moisture, and the method of determination of the moisture content.

that dry tonnages are reported.

Percentage reductions

were:

overburden and saprolite 5%, saprock 3%, transition 2% and fresh 1 %.

Cut‐off parameters

The cut‐off grade used for reporting is 0.5 g/t Au and has been

The basis of the adopted cut‐off grade(s) or quality parameters applied.

determined with due consideration to processing and surface haulage

costs, metallurgical recovery, royalties and gold price.

Mining factors or assumptions

The mining method assumes conventional open pit with a contract

Assumptions made regarding possible mining methods, minimum mining

mining fleet appropriately scaled to the size of the deposit.

dimensions and internal (or, if applicable, external) mining dilution. It is

De facto minimum mining width is a function of cell size (5 mX by 12.5

always necessary as part of the process of determining reasonable

mY by 5 mZ).

prospects for eventual economic extraction to consider potential mining

No allowance for dilution or recovery has been made.

methods, but the assumptions made regarding mining methods and

parameters when estimating Mineral Resources may not always be

rigorous. Where this is the case, this should be reported with an

explanation of the basis of the mining assumptions made.

Metallurgical factors or assumptions

Ore extracted from Renegade could potentially be processed at the

The basis for assumptions or predictions regarding metallurgical

neighbouring Gruyere process plant via a toll treatment agreement.

amenability. It is always necessary as part of the process of determining

Metallurgical recovery assumptions used in the optimisation are

reasonable prospects for eventual economic extraction to consider

informed by historic bottle‐roll test‐work completed in 2007 indicating

potential metallurgical methods, but the assumptions regarding

high recovery was possible. The recovery applied in the optimisation

metallurgical treatment processes and parameters made when reporting

process is 94%.

Mineral Resources may not always be rigorous. Where this is the case,

this should be reported with an explanation of the basis of the

metallurgical assumptions made.

Environmental factors or assumptions

Surface waste dumps will be used to store waste material from open pit

Assumptions made regarding possible waste and process residue

mining.

disposal options. It is always necessary as part of the process of

A conventional tailings storage facility at the Gruyere processing plant

determining reasonable prospects for eventual economic extraction to

will be utilised for tailings disposal.

consider the potential environmental impacts of the mining and

No test work has been completed regarding potential acid mine drainage

processing operation. While at this stage the determination of potential

from various material types, however, if identified in future studies

environmental impacts, particularly for a greenfields project, may not

appropriate measures will be used to manage any issues.

always be well advanced, the status of early consideration of these

potential environmental impacts should be reported. Where these

aspects have not been considered this should be reported with an

explanation of the environmental assumptions made.

Bulk density

Bulk density has been determined using data available from the

Whether assumed or determined. If assumed, the basis for the

Renegade diamond drilling. Where data populations were limited for

assumptions. If determined, the method used, whether wet or dry, the

particular material types other bulk density data in the region were

frequency of the measurements, the nature, size and representativeness

considered. All density was collected using the weight in air / weight

of the samples.

method.

Page 52 of 53

Criteria and JORC Code explanation

Commentary

The bulk density for bulk material must have been measured by methods

Bulk density is applied by weathering (material) type.

that adequately account for void spaces (vugs, porosity, etc), moisture

and differences between rock and alteration zones within the deposit.

Discuss assumptions for bulk density estimates used in the evaluation

Data was coded by weathering type (material) and domain

process of the different materials.

(mineralisation). Assumptions for moisture percentages were made and

accounted for in the final value used for bulk density.

Classification

The Mineral Resource is constrained within a Lerch‐Grossman Whittle

The basis for the classification of the Mineral Resources into varying

shell. Blocks in the geological model above that shell have been classified

confidence categories.

as Inferred. No indicated or measured has been classified due to

inadequate drill spacing. Several factors have been used in combination

to aid the classification:

Drill hole spacing

Inferred - 20 to 50 m East by 50 to 100 m North. Depth of drilling

and 50 m along strike from extent of drilling. Extrapolation 40

m down dip from last drill hole intercept.

Geological continuity.

Grade continuity.

Estimation quality parameters derived from the Ordinary Kriging

process.

Whether appropriate account has been taken of all relevant factors (i.e.

All relevant factors have been taken into account in the classification of

relative confidence in tonnage/grade estimations, reliability of input

the Mineral Resource.

data, confidence in continuity of geology and metal values, quality,

quantity and distribution of the data).

Whether the result appropriately reflects the Competent Person's view of

The Mineral Resource estimate appropriately reflects the Competent

the deposit.

Persons' view of the deposit.

Audits or reviews

Internal geological peer reviews were held and documented.

The results of any audits or reviews of Mineral Resource estimates.

Discussion of relative accuracy/ confidence

Variances to the tonnage, grade and metal of the Mineral Resource

Where appropriate a statement of the relative accuracy and confidence

estimate are expected with further definition drilling. It is the opinion of

level in the Mineral Resource estimate using an approach or procedure

the Competent Persons that these variances will not significantly affect

deemed appropriate by the Competent Person. For example, the

economic extraction of the deposit.

application of statistical or geostatistical procedures to quantify the

relative accuracy of the resource within stated confidence limits, or, if

such an approach is not deemed appropriate, a qualitative discussion of

the factors that could affect the relative accuracy and confidence of the

estimate.

The statement should specify whether it relates to global or local

The Mineral Resource relates to global tonnage and grade estimates.

estimates, and, if local, state the relevant tonnages, which should be

relevant to technical and economic evaluation. Documentation should

include assumptions made and the procedures used.

These statements of relative accuracy and confidence of the estimate

No previous mining.

should be compared with production data, where available.

Page 53 of 53

Attachments

  • Original document
  • Permalink

Disclaimer

Gold Road Resources Limited published this content on 04 December 2019 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 04 December 2019 01:12:06 UTC