Log in
Forgot password ?
Become a member for free
Sign up
Sign up
Dynamic quotes 

MarketScreener Homepage  >  Equities  >  Nasdaq  >  Intel Corporation    INTC

My previous session
Most popular
News SummaryMost relevantAll newsofficial PublicationsSector newsTweets

Intel Editorial: Intel's New Self-Learning Chip Promises to Accelerate Artificial Intelligence

share with twitter share with LinkedIn share with facebook
share via e-mail
10/05/2017 | 07:27pm CEST

By a News Reporter-Staff News Editor at Robotics & Machine Learning -- The following is an opinion editorial provided by Dr. Michael Mayberry, corporate vice president and managing director of Intel Labs at Intel Corporation.

This Smart News Release features multimedia. View the full release here: http://www.businesswire.com/news/home/20170925005364/en/ Intel introduces the Loihi test chip, a first-of-its-kind self-learning neuromorphic chip that mimics how the brain functions by learning to operate based on various modes of feedback from the environment. Announced on Sept. 25, 2017, the extremely energy-efficient chip uses data to learn and make inferences, gets smarter over time and takes a novel approach to computing via asynchronous spiking. (Credit: Intel Corporation) Imagine a future where complex decisions could be made faster and adapt over time. Where societal and industrial problems can be autonomously solved using learned experiences.

It's a future where first responders using image-recognition applications can analyze streetlight camera images and quickly solve missing or abducted person reports.

It's a future where stoplights automatically adjust their timing to sync with the flow of traffic, reducing gridlock and optimizing starts and stops.

It's a future where robots are more autonomous and performance efficiency is dramatically increased.

An increasing need for collection, analysis and decision-making from highly dynamic and unstructured natural data is driving demand for compute that may outpace both classic CPU and GPU architectures. To keep pace with the evolution of technology and to drive computing beyond PCs and servers, Intel has been working for the past six years on specialized architectures that can accelerate classic compute platforms. Intel has also recently advanced investments and R&D in artificial intelligence (AI) and neuromorphic computing. Press Kit: Artificial Intelligence Our work in neuromorphic computing builds on decades of research and collaboration that started with CalTech professor Carver Mead, who was known for his foundational work in semiconductor design. The combination of chip expertise, physics and biology yielded an environment for new ideas. The ideas were simple but revolutionary: comparing machines with the human brain. The field of study continues to be highly collaborative and supportive of furthering the science.

As part of an effort within Intel Labs, Intel has developed a first-of-its-kind self-learning neuromorphic chip - the Loihi test chip - that mimics how the brain functions by learning to operate based on various modes of feedback from the environment. This extremely energy-efficient chip, which uses the data to learn and make inferences, gets smarter over time and does not need to be trained in the traditional way. It takes a novel approach to computing via asynchronous spiking.

We believe AI is in its infancy and more architectures and methods -- like Loihi -- will continue emerging that raise the bar for AI. Neuromorphic computing draws inspiration from our current understanding of the brain's architecture and its associated computations. The brain's neural networks relay information with pulses or spikes, modulate the synaptic strengths or weight of the interconnections based on timing of these spikes, and store these changes locally at the interconnections. Intelligent behaviors emerge from the cooperative and competitive interactions between multiple regions within the brain's neural networks and its environment.

Machine learning models such as deep learning have made tremendous recent advancements by using extensive training datasets to recognize objects and events. However, unless their training sets have specifically accounted for a particular element, situation or circumstance, these machine learning systems do not generalize well.

The potential benefits from self-learning chips are limitless. One example provides a person's heartbeat reading under various conditions - after jogging, following a meal or before going to bed - to a neuromorphic-based system that parses the data to determine a "normal" heartbeat. The system can then continuously monitor incoming heart data in order to flag patterns that do not match the "normal" pattern. The system could be personalized for any user.

This type of logic could also be applied to other use cases, like cybersecurity where an abnormality or difference in data streams could identify a breach or a hack since the system has learned the "normal" under various contexts. Introducing the Intel Loihi test chip The Intel Loihi research test chip includes digital circuits that mimic the brain's basic mechanics, making machine learning faster and more efficient while requiring lower compute power. Neuromorphic chip models draw inspiration from how neurons communicate and learn, using spikes and plastic synapses that can be modulated based on timing. This could help computers self-organize and make decisions based on patterns and associations.

The Intel Loihi test chip offers highly flexible on-chip learning and combines training and inference on a single chip. This allows machines to be autonomous and to adapt in real time instead of waiting for the next update from the cloud. Researchers have demonstrated learning at a rate that is a 1 million times improvement compared with other typical spiking neural nets as measured by total operations to achieve a given accuracy when solving MNIST digit recognition problems. Compared to technologies such as convolutional neural networks and deep learning neural networks, the Intel Loihi test chip uses many fewer resources on the same task.

The self-learning capabilities prototyped by this test chip have enormous potential to improve automotive and industrial applications as well as personal robotics - any application that would benefit from autonomous operation and continuous learning in an unstructured environment. For example, recognizing the movement of a car or bike.

Further, it is up to 1,000 times more energy-efficient than general purpose computing required for typical training systems.

Keywords for this news article include: Cyborgs, Neural Networks, Machine Learning, Intel Corporation, Emerging Technologies, Artificial Intelligence.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2017, NewsRx LLC

(c) 2017 NewsRx LLC, source Science Newsletters

share with twitter share with LinkedIn share with facebook
share via e-mail
03:05pGLOBAL IOT IN RETAIL MARKET ANALYSIS : New Study Focusing on IoT in Retail Marke..
11:26aINTEL : Innovating for the 'Data-Centric' Era
08/13INTEL : Artificial Intelligence Helps Bring ‘The Meg’ Mega Shark to ..
08/13INTEL : Artificial Intelligence
08/11INTEL : India trained 100,000 developers in AI
08/10INTEL : Media Alert Data-Centric Innovation Summit Data Center Platform and Prod..
08/10Qualcomm settles anti-trust case with Taiwan regulator for $93 million
08/10Qualcomm settles anti-trust case with Taiwan regulator for $93 million
08/09INTEL : Researchers at Intel Corporation Release New Data on Science (The case f..
08/08INTEL : Current report filing
More news
News from SeekingAlpha
04:56aBest And Worst Performing S&P 500 Stocks On Earnings 
08/13AMD +4.1% on 2990WX launch, positive reviews against Intel 
08/134 Core Reasons To Buy The Correction In Intel 
08/12S&P 500 : It's All In The Numbers And The Numbers Never Lie 
08/11Intel Is Starting To Look Attractive Again 
Financials ($)
Sales 2018 69 546 M
EBIT 2018 22 057 M
Net income 2018 19 294 M
Debt 2018 15 577 M
Yield 2018 2,43%
P/E ratio 2018 11,89
P/E ratio 2019 11,98
EV / Sales 2018 3,46x
EV / Sales 2019 3,34x
Capitalization 225 B
Duration : Period :
Intel Corporation Technical Analysis Chart | MarketScreener
Full-screen chart
Technical analysis trends INTEL CORPORATION
Short TermMid-TermLong Term
Income Statement Evolution
Mean consensus OUTPERFORM
Number of Analysts 41
Average target price 55,8 $
Spread / Average Target 15%
EPS Revisions
Robert Holmes Swan Chief Executive Officer, Executive VP & CFO
Andy D. Bryant Chairman
Ann B. Kelleher Senior VP-Technology & Manufacturing Group
Venkata S. M. Renduchintala Chief Engineering Officer
Paula Tolliver Chief Information Officer & Vice President
Sector and Competitors
1st jan.Capitalization (M$)
BROADCOM INC-17.84%91 616