Log in
Forgot password ?
Become a member for free
Sign up
Sign up
New member
Sign up for FREE
New customer
Discover our services
Dynamic quotes 


SummaryMost relevantAll NewsAnalyst Reco.Other languagesPress ReleasesOfficial PublicationsSector newsMarketScreener Strategies

Lattice Semiconductor : The FPGA Memory Connection

04/06/2021 | 06:00pm EDT
The FPGA Memory Connection
Posted 04/07/2021 by Bob O'Donnell

Some of the least known and most underappreciated pieces of tech equipment are what's known as 'embedded' devices. These workhorses power critical capabilities in everything from health care to factory floors to home appliances and beyond. They incorporate the kind of computing technology you might find in a PC, smartphone or other intelligent device, but are typically wrapped in a package or mode of operation that's designed for a singular purpose, such as a smart speaker, a factory controller, or an automotive camera system.

Because of the essential tasks which many of these embedded devices perform, it's critical that they are able to operate reliably and start up (or restart, in the case of a power failure or firmware update) very quickly. As a result, a great deal of engineering effort is put into ensuring this happens and several critical components are required to make sure it's even possible. Key among them are fast memory and an FPGA, which monitors and directs the process of loading a device's firmware into memory so that it can properly start.

While that sounds like it might be a relatively simple task, it turns out there can be numerous obstacles along the way. To begin with, there aren't any 'official' industry standards for making these connections. SPI, or Serial Peripheral Interface, has become a de facto standard for enabling the logical connections between a device's firmware and memory, but physical interface standards can still vary. As a result, it's important for companies to find partners with whom they can work to ensure that both the physical and logical requirements can be met to guarantee stable, reliable connections between these essential base-level elements.

To make the process easier for its customers, FPGA maker Lattice Semiconductor has partnered for many years with Micron, one of the world's leading memory suppliers, to offer SPI-based solutions for embedded devices. The two companies have worked hard to ensure compatibility between their respective elements, and Micron has even created an extensive compatibility guide that clarifies exactly which of its various types and sizes of memory SKUs work with different Lattice FPGAs. Again, while that sounds simple, the enormous range of choices from each side can easily lead to confusion, so the compatibility guide serves a very important role.

Technically, communications between the FPGA and embedded flash memory occur via a mechanism called SFDP (Serial Flash Discovery Parameters), which is used to confirm the SPI memory is ready to begin the boot process. Then, through a version of SPI called Quad SPI (Octal SPI support from Lattice is coming), the firmware instructions are loaded into memory so that the embedded device can boot. Thanks to the improvements in these connections, the speed of these data transfers has increased from 33 MHz to 150 MHz, and that translates from boot times that took as much as 50 milliseconds down to just 11 msec. While in real-world numbers these are both extremely short, in a machine-driven world of embedded devices, these differences can matter.

The Lattice Certus™-NX Versa Evaluation Board is a good example of the collaboration between Lattice and Micron. The board uses SPI NOR flash (the smaller device outlined in yellow, MT25QU128ABA1ESE-0SIT) and DDR3 DRAM (the larger device outlined in yellow, MT41K64M16TW-107:J) technologies from Micron.

The Lattice Sentry™ Demo Board for the Mach™-NX FPGA uses four SPI NOR flash devices from Micron (MT25QL256BBB8ESF-0AAT), outlined in yellow above

In addition to talking to flash memory at bootup, Lattice works with Micron DRAM memory during device operation. To that end, Lattice has integrated DDR3 DRAM and LPDDR memory controllers into the FPGAs designed for the embedded market to ensure speedy and flawless operation with Micron memory. The end result is an easier solution for engineers to incorporate into their designs and that, in turn, speeds up the process of creating new products.

The collaboration between Lattice and Micron improves device operational performance by allowing the FPGA to access a larger amount of external DRAM memory to augment the on-chip SRAM built into FPGAs. DRAM is produced on cutting-edge semiconductor process technology nodes, which means the memories can get faster and less expensive because of the technological advancements that these process nodes offer. Once again, this translates into lower costs and more flexibility for embedded device designers. It also allows companies to purchase best-of-breed components as they design their devices, instead of having to make compromises.

Ultimately, the goal of the partnership between Lattice and Micron is to assure that two leader suppliers can each provide best-of-breed products that work well together and allow their shared customers to benefit. That's clearly a connection worth having.

For more specific information on compatibility between Lattice FPGAs and Micron memory technologies, please visit the Compatibility Guide on the Micron website.

Bob O'Donnell is the president and chief analyst of TECHnalysis Research, LLC a market research firm that provides strategic consulting and market research services to the technology industry and professional financial community. You can follow him on Twitter @bobodtech.



Lattice Semiconductor Corporation published this content on 07 April 2021 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 14 April 2021 07:52:03 UTC.

© Publicnow 2021
07/27LATTICE SEMICONDUCTOR : sensAI Solution Stack Wins its 6th Industry Award with E..
07/21LATTICE SEMICONDUCTOR : Recognized for 'Leading the Next Wave of FPGA Innovation..
07/20LATTICE SEMICONDUCTOR : Recognized for “Leading the Next Wave of FPGA Inno..
07/14LATTICE SEMICONDUCTOR : Joins Panel of Industry Experts to Discuss Application D..
07/14LATTICE SEMICONDUCTOR : Joins Panel of Industry Experts to Discuss Application D..
07/09LATTICE SEMICONDUCTOR : CertusPro-NX General-Purpose FPGA to be Available from F..
07/08LATTICE SEMICONDUCTOR : Schedules Second Quarter 2021 Results Conference Call
07/06LATTICE SEMICONDUCTOR : Announces LEC2 TechWeb Trainings to Help Developers Crea..
07/06LATTICE SEMICONDUCTOR : Cyber Security Trends and Standards in Automotive FPGAs
07/06LATTICE SEMICONDUCTOR : KeyBanc Adjusts Lattice Semiconductor's Price Target to ..
More news
Financials (USD)
Sales 2021 478 M - -
Net income 2021 77,9 M - -
Net Debt 2021 - - -
P/E ratio 2021 103x
Yield 2021 -
Capitalization 7 749 M 7 749 M -
Capi. / Sales 2021 16,2x
Capi. / Sales 2022 14,4x
Nbr of Employees 746
Free-Float 98,4%
Duration : Period :
Lattice Semiconductor Corporation Technical Analysis Chart | MarketScreener
Full-screen chart
Short TermMid-TermLong Term
Income Statement Evolution
Mean consensus BUY
Number of Analysts 10
Last Close Price 56,75 $
Average target price 54,78 $
Spread / Average Target -3,48%
EPS Revisions
Managers and Directors
James R. Anderson President, Chief Executive Officer & Director
Sherri Luther Chief Financial Officer & Vice President
David Jeffrey Richardson Chairman
Stephen Douglass Vice President-Research & Development
Glenn O’Rourke Vice President-Global Operations
Sector and Competitors
1st jan.Capi. (M$)
BROADCOM INC.10.86%199 140