Log in
Forgot password ?
Become a member for free
Sign up
Sign up
New member
Sign up for FREE
New customer
Discover our services
Dynamic quotes 


SummaryMost relevantAll NewsAnalyst Reco.Other languagesPress ReleasesOfficial PublicationsSector news

Making Analytics Smarter: How Smart Data Fuels Effective Analytics

06/07/2021 | 09:37am EDT
June 7th, 2021

RSS Feed

For communication service providers, the wealth of untapped data within their networks can provide valuable insights and drive new opportunities-if it can be harnessed effectively. That, however, is no easy task. If you want to build from the most accurate data, IP packet data provides the best source of truth, because it represents what actually happened on the network. The sheer volume of data being captured, however, makes it nearly impossible to distill the relevant data and mine it for actionable insights.

This is where smart data comes in. By extracting and parsing the payloads and adding intelligence to packets, you can produce key performance indicators (KPIs) that power smart analytics. In this way, smart data begets smart analytics that service providers can use to take full advantage of artificial intelligence (AI) and machine learning (ML) tools.

Enriching Data Lake Operations

By utilizing smart data with smart analytics, service providers can bring enriched, multidimensional information to enhance data lake operations. Data lake are a centralized repository containing all of a provider's and unstructured, semi-structured, and structured data, which is then used for downstream applications. A service provider's data lake already contains useful dimensions, such as subscriber and device identifiers. This data can be further enriched with information from the user plane and control plane packets to include network-specific details, including equipment vendor, radio access technology (RAT) extended geographic and application identifiers, network and device behavior and user experience, and more.

This enriched data record offers a new level of visibility that eliminates borders between vendors, radio generations and network types, handsets, and other technologies such as over-the-top video. Service providers can customize the feed, exporting only the data sets they need, reducing data size by removing fields they don't want, and hiding personally identifiable information (PII) from records.

This refinement also lowers data lake costs by reducing feeds down to the information that is specifically useful to various functional groups of the service provider.

Enabling Data Science

When smart data is combined with smart analytics, service providers can make clean and highly curated data available for use by AI and ML network automation orchestration tools, ensuring high-quality output. Without smart data, the output is uncertain. To put it bluntly: garbage in, garbage out.

Smart data is key to enabling effective data science. Smart data powers new algorithms and automated analytics that provide observability into a provider's services as well as data awareness beyond traditional operational insights from fixed workflows. The components of smart data are the foundation that allows data scientists to build data applications.

For data scientists, the ability to see inside a service and understand what's happening under the hood based on available clues is invaluable. Smart data allows data scientists to solve business questions. A centrally managed data lake enables service providers to apply custom policies, information lifecycle rules to ]whole swaths of data all at once. Then different data sources can be blended together, exposing unique and interesting opportunities for the business.

When smart data is used to create smart analytics, service providers are able to make the most of their data lakes to enable all data stakeholders-from operations to data scientists to business users-to answer their troubleshooting, analytical, and executive questions.

Learn more about smart data-driven analytics


NetScout Systems Inc. published this content on 07 June 2021 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 07 June 2021 13:36:07 UTC.

ę Publicnow 2021
08/03INSIDER TRENDS : Insider at NetScout Systems Converts/Exercises Derivative Secur..
08/03INSIDER TRENDS : NetScout Systems Insider Exercises Option/Derivative Security t..
08/03INSIDER TRENDS : Insider at NetScout Systems Acquires Stock Via Conversion of Op..
08/03INSIDER TRENDS : Insider at NetScout Systems Acquires Stock Via Option/Derivativ..
08/02NETSCOUT : Will the Tokyo Olympics Games Be a Target for Cyber Extortionists?
07/30NETSCOUT : RBC Raises Price Target on NetScout Systems to $29 From $28, Reiterat..
07/29NETSCOUT : Posts Higher Q1 Results Above Estimates, Affirms Full-Year Guidance
07/29NETSCOUT : Fiscal Q1 Earnings Snapshot
07/29NETSCOUT : Reports First Quarter Fiscal Year 2022 Financial Results (Form 8-K)
07/29GUIDANCE : (NTCT) NETSCOUT SYSTEMS Sees Fiscal Year 2022 EPS $1.71 - $1.77
More news
Financials (USD)
Sales 2022 849 M - -
Net income 2022 28,3 M - -
Net cash 2022 318 M - -
P/E ratio 2022 69,4x
Yield 2022 -
Capitalization 2 004 M 2 004 M -
EV / Sales 2022 1,99x
EV / Sales 2023 1,62x
Nbr of Employees 2 409
Free-Float 57,3%
Duration : Period :
NetScout Systems, Inc. Technical Analysis Chart | MarketScreener
Full-screen chart
Technical analysis trends NETSCOUT SYSTEMS, INC.
Short TermMid-TermLong Term
Income Statement Evolution
Mean consensus HOLD
Number of Analysts 3
Last Close Price 27,05 $
Average target price 28,67 $
Spread / Average Target 5,98%
EPS Revisions
Managers and Directors
Anil K. Singhal Chairman, President & Chief Executive Officer
Jean Ann Bua CFO, Treasurer, Chief Accounting Officer & EVP
Bruce Allen Kelley Chief Technology Officer & Senior Vice President
Ashwani Singhal Senior Vice President-Research & Development
Thor Wallace Chief Information Officer & Senior Vice President
Sector and Competitors