Not intended for UK-based media

Darmstadt, Germany, and New York, US, November 8, 2019 - Merck KGaA, Darmstadt, Germany, which operates its biopharmaceutical business as EMD Serono in the US and Canada, and Pfizer Inc. (NYSE: PFE) today announced topline results of the Phase III JAVELIN Gastric 100 study evaluating avelumab as first-line maintenance therapy following induction chemotherapy in patients with unresectable, locally advanced or metastatic HER2-negative gastric or gastroesophageal junction (GEJ) cancer versus continuation of chemotherapy or best supportive care. While the study showed clinical activity for avelumab in this setting, it did not meet the primary endpoints of superior overall survival compared with the standard of care in the overall intent-to-treat population (n=499; HR: 0.91; 95% CI: 0.74, 1.11) or the PD-L1-positive population (n=54; HR: 1.13; 95% CI: 0.57, 2.23).

'Advanced gastric cancer is a hard-to-treat tumor, and there is a key unmet need for additional treatments. Additionally, it is rarely immunogenic, and to date no immune checkpoint inhibitor has demonstrated superiority to the current standard of care with chemotherapy,' said Prof. Dr. Markus Möhler, Head of GI Oncology, Senior Physician Gastroenterology & Endosonography, Johannes-Gutenberg University, Mainz, Germany and coordinating investigator. 'As we have yet to define the ideal strategy for incorporating immunotherapy in the continuum of care, the results of JAVELIN Gastric 100 will provide essential information in advancing our understanding and potential treatment options of this challenging disease.'

No new safety signals were observed, and the safety profile for avelumab in this trial was consistent with that observed in the overall JAVELIN clinical development program. A detailed analysis of the Phase III JAVELIN Gastric 100 study is being conducted to better understand the results, and findings will be shared with the scientific community.

About JAVELIN Gastric 100

JAVELIN Gastric 100 (NCT02625610) is a Phase III, multicenter, randomized, open-label trial investigating maintenance therapy with avelumab in patients with HER2-negative advanced (unresectable, locally advanced or metastatic) adenocarcinoma of the stomach or of the gastroesophageal junction (GEJ) who have not yet received chemotherapy for the treatment of metastatic or locally advanced disease, in an overall population unselected for PD-L1 expression. A total of 805 patients were enrolled to receive induction (initial) chemotherapy with oxaliplatin and either 5-fluorouracil (5-FU) or capecitabine for 12 weeks. Of these, 499 patients whose disease had not progressed at the end of the 12 weeks of chemotherapy treatment were randomly assigned to receive either avelumab as a maintenance treatment or continuation of the same chemotherapy regimen until disease progression. Patients unfit for further chemotherapy received best supportive care. The primary endpoints are overall survival in all randomized patients or in the PD-L1+ population (≥1%).

About Gastric Cancer

Globally, gastric cancer is the third most common cause of cancer death.1 The standard first-line option for patients with HER2-negative disease is chemotherapy,2 yet patients with advanced disease can experience resistance, leading to a poor prognosis.3 Over the past decade, there have been limited advancements in treatment,4 and the median overall survival for patients at the advanced stage is less than one year.5 In recognition of the significant need, the Merck KGaA, Darmstadt, Germany-Pfizer alliance initiated a Phase III trial to assess a novel first-line maintenance approach in advanced gastric cancer, to understand the potential of checkpoint inhibitor treatment following confirmed response or stabilization of disease on induction chemotherapy.

About the JAVELIN Clinical Development Program

The clinical development program for BAVENCIO, known as JAVELIN, involves more than 10,000 patients evaluated across more than 15 different tumor types. In addition to gastric/gastroesophageal junction cancer, these tumor types include head and neck cancer, Merkel cell carcinoma, non-small cell lung cancer, renal cell and urothelial carcinoma.

About BAVENCIO® (avelumab)

BAVENCIO is a human anti-programmed death ligand-1 (PD-L1) antibody. BAVENCIO has been shown in preclinical models to engage both the adaptive and innate immune functions. By blocking the interaction of PD-L1 with PD-1 receptors, BAVENCIO has been shown to release the suppression of the T cell-mediated antitumor immune response in preclinical models.6-8 In November 2014, Merck KGaA, Darmstadt, Germany and Pfizer announced a strategic alliance to co-develop and co-commercialize BAVENCIO.

BAVENCIO Approved Indications

BAVENCIO® (avelumab) in combination with axitinib is indicated in the US for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

In the US, the FDA granted accelerated approval for BAVENCIO for the treatment of (i) adults and pediatric patients 12 years and older with metastatic Merkel cell carcinoma (mMCC) and (ii) patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy, or have disease progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy. These indications are approved under accelerated approval based on tumor response rate and duration of response. Continued approval for these indications may be contingent upon verification and description of clinical benefit in confirmatory trials.

Avelumab is currently approved for patients with MCC in 50 countries globally, with the majority of these approvals in a broad indication that is not limited to a specific line of treatment.

BAVENCIO Important Safety Information from the US FDA-Approved Label

BAVENCIO can cause immune-mediated pneumonitis, including fatal cases. Monitor patients for signs and symptoms of pneumonitis, and evaluate suspected cases with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold BAVENCIO for moderate (Grade 2) and permanently discontinue for severe (Grade 3), life-threatening (Grade 4), or recurrent moderate (Grade 2) pneumonitis. Pneumonitis occurred in 1.2% of patients, including one (0.1%) patient with Grade 5, one (0.1%) with Grade 4, and five (0.3%) with Grade 3.

BAVENCIO can cause hepatotoxicity and immune-mediated hepatitis, including fatal cases. Monitor patients for abnormal liver tests prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater hepatitis. Withhold BAVENCIO for moderate (Grade 2) immune-mediated hepatitis until resolution and permanently discontinue for severe (Grade 3) or life-threatening (Grade 4) immune-mediated hepatitis. Immune-mediated hepatitis occurred with BAVENCIO as a single agent in 0.9% of patients, including two (0.1%) patients with Grade 5, and 11 (0.6%) with Grade 3.

BAVENCIO in combination with axitinib can cause hepatotoxicity with higher than expected frequencies of Grade 3 and 4 alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation. Consider more frequent monitoring of liver enzymes as compared to when the drugs are used as monotherapy. Withhold BAVENCIO and axitinib for moderate (Grade 2) hepatotoxicity and permanently discontinue the combination for severe or life-threatening (Grade 3 or 4) hepatotoxicity. Administer corticosteroids as needed. In patients treated with BAVENCIO in combination with axitinib, Grades 3 and 4 increased ALT and AST occurred in 9% and 7% of patients, respectively, and immune-mediated hepatitis occurred in 7% of patients, including 4.9% with Grade 3 or 4.

BAVENCIO can cause immune-mediated colitis. Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold BAVENCIO until resolution for moderate or severe (Grade 2 or 3) colitis until resolution. Permanently discontinue for life-threatening (Grade 4) or recurrent (Grade 3) colitis upon reinitiation of BAVENCIO. Immune-mediated colitis occurred in 1.5% of patients, including seven (0.4%) with Grade 3.

BAVENCIO can cause immune-mediated endocrinopathies, including adrenal insufficiency, thyroid disorders, and type 1 diabetes mellitus.

Monitor patients for signs and symptoms of adrenal insufficiency during and after treatment, and administer corticosteroids as appropriate. Withhold BAVENCIO for severe (Grade 3) or life-threatening (Grade 4) adrenal insufficiency. Adrenal insufficiency was reported in 0.5% of patients, including one (0.1%) with Grade 3.

Thyroid disorders can occur at any time during treatment. Monitor patients for changes in thyroid function at the start of treatment, periodically during treatment, and as indicated based on clinical evaluation. Manage hypothyroidism with hormone replacement therapy and hyperthyroidism with medical management. Withhold BAVENCIO for severe (Grade 3) or life-threatening (Grade 4) thyroid disorders. Thyroid disorders, including hypothyroidism, hyperthyroidism, and thyroiditis, were reported in 6% of patients, including three (0.2%) with Grade 3.

Type 1 diabetes mellitus including diabetic ketoacidosis: Monitor patients for hyperglycemia or other signs and symptoms of diabetes. Withhold BAVENCIO and administer antihyperglycemics or insulin in patients with severe or life-threatening (Grade ≥3) hyperglycemia, and resume treatment when metabolic control is achieved. Type 1 diabetes mellitus without an alternative etiology occurred in 0.1% of patients, including two cases of Grade 3 hyperglycemia.

BAVENCIO can cause immune-mediated nephritis and renal dysfunction. Monitor patients for elevated serum creatinine prior to and periodically during treatment. Administer corticosteroids for Grade 2 or greater nephritis. Withhold BAVENCIO for moderate (Grade 2) or severe (Grade 3) nephritis until resolution to Grade 1 or lower. Permanently discontinue BAVENCIO for life-threatening (Grade 4) nephritis. Immune-mediated nephritis occurred in 0.1% of patients.

BAVENCIO can result in other severe and fatal immune-mediated adverse reactions involving any organ system during treatment or after treatment discontinuation. For suspected immune-mediated adverse reactions, evaluate to confirm or rule out an immune-mediated adverse reaction and to exclude other causes. Depending on the severity of the adverse reaction, withhold or permanently discontinue BAVENCIO, administer high-dose corticosteroids, and initiate hormone replacement therapy, if appropriate. Resume BAVENCIO when the immune-mediated adverse reaction remains at Grade 1 or lower following a corticosteroid taper. Permanently discontinue BAVENCIO for any severe (Grade 3) immune-mediated adverse reaction that recurs and for any life-threatening (Grade 4) immune-mediated adverse reaction. The following clinically significant immune-mediated adverse reactions occurred in less than 1% of 1738 patients treated with BAVENCIO as a single agent or in 489 patients who received BAVENCIO in combination with axitinib: myocarditis including fatal cases, pancreatitis including fatal cases, myositis, psoriasis, arthritis, exfoliative dermatitis, erythema multiforme, pemphigoid, hypopituitarism, uveitis, Guillain-Barré syndrome, and systemic inflammatory response.

BAVENCIO can cause severe or life-threatening infusion-related reactions. Premedicate patients with an antihistamine and acetaminophen prior to the first 4 infusions and for subsequent infusions based upon clinical judgment and presence/severity of prior infusion reactions. Monitor patients for signs and symptoms of infusion-related reactions, including pyrexia, chills, flushing, hypotension, dyspnea, wheezing, back pain, abdominal pain, and urticaria. Interrupt or slow the rate of infusion for mild (Grade 1) or moderate (Grade 2) infusion-related reactions. Permanently discontinue BAVENCIO for severe (Grade 3) or life-threatening (Grade 4) infusion-related reactions. Infusion-related reactions occurred in 25% of patients, including three (0.2%) patients with Grade 4 and nine (0.5%) with Grade 3.

BAVENCIO in combination with axitinib can cause major adverse cardiovascular events (MACE) including severe and fatal events. Consider baseline and periodic evaluations of left ventricular ejection fraction. Monitor for signs and symptoms of cardiovascular events. Optimize management of cardiovascular risk factors, such as hypertension, diabetes, or dyslipidemia. Discontinue BAVENCIO and axitinib for Grade 3-4 cardiovascular events. MACEoccurred in 7% of patients with advanced RCC treated with BAVENCIO in combination with axitinib compared to 3.4% treated with sunitinib. These events included death due to cardiac events (1.4%), Grade 3-4 myocardial infarction (2.8%), and Grade 3-4 congestive heart failure (1.8%).

BAVENCIO can cause fetal harm when administered to a pregnant woman. Advise patients of the potential risk to a fetus including the risk of fetal death. Advise females of childbearing potential to use effective contraception during treatment with BAVENCIO and for at least 1 month after the last dose of BAVENCIO. It is not known whether BAVENCIO is excreted in human milk. Advise a lactating woman not to breastfeed during treatment and for at least 1 month after the last dose of BAVENCIO due to the potential for serious adverse reactions in breastfed infants.

The most common adverse reactions (all grades, ≥ 20%) in patients with metastatic Merkel cell carcinoma (MCC) were fatigue (50%), musculoskeletal pain (32%), diarrhea (23%), nausea (22%), infusion-related reaction (22%), rash (22%), decreased appetite (20%), and peripheral edema (20%).

Selected treatment-emergent laboratory abnormalities (all grades, ≥ 20%) in patients with metastatic MCC were lymphopenia (49%), anemia (35%), increased aspartate aminotransferase (34%), thrombocytopenia (27%), and increased alanine aminotransferase (20%).

The most common adverse reactions (all grades, ≥ 20%) in patients with locally advanced or metastatic urothelial carcinoma (UC) were fatigue (41%), infusion-related reaction (30%), musculoskeletal pain (25%), nausea (24%), decreased appetite/hypophagia (21%), and urinary tract infection (21%).

Selected laboratory abnormalities (Grades 3-4, ≥ 3%) in patients with locally advanced or metastatic UC were hyponatremia (16%), increased gamma-glutamyltransferase (12%), lymphopenia (11%), hyperglycemia (9%), increased alkaline phosphatase (7%), anemia (6%), increased lipase (6%), hyperkalemia (3%), and increased aspartate aminotransferase (3%).

Fatal adverse reactions occurred in 1.8% of patients with advanced renal cell carcinoma (RCC) receiving BAVENCIO in combination with axitinib. These included sudden cardiac death (1.2%), stroke (0.2%), myocarditis (0.2%), and necrotizing pancreatitis (0.2%).

The most common adverse reactions (all grades, ≥20%) in patients with advanced RCC receiving BAVENCIO in combination with axtinib (vs sunitinib) were diarrhea (62% vs 48%), fatigue (53% vs 54%), hypertension (50% vs 36%), musculoskeletal pain (40% vs 33%), nausea (34% vs 39%), mucositis (34% vs 35%), palmar-plantar erythrodysesthesia (33% vs 34%), dysphonia (31% vs 3.2%), decreased appetite (26% vs 29%), hypothyroidism (25% vs 14%), rash (25% vs 16%), hepatotoxicity (24% vs 18%), cough (23% vs 19%), dyspnea (23% vs 16%), abdominal pain (22% vs 19%), and headache (21% vs 16%).

Selected laboratory abnormalities (all grades, ≥20%) worsening from baseline in patients with advanced RCC receiving BAVENCIO in combination with axitinib (vs sunitinib) were blood triglycerides increased (71% vs 48%), blood creatinine increased (62% vs 68%), blood cholesterol increased (57% vs 22%), alanine aminotransferase increased (ALT) (50% vs 46%), aspartate aminotransferase increased (AST) (47% vs 57%), blood sodium decreased (38% vs 37%), lipase increased (37% vs 25%), blood potassium increased (35% vs 28%), platelet count decreased (27% vs 80%), blood bilirubin increased (21% vs 23%), and hemoglobin decreased (21% vs 65%).

Please see full US Prescribing Information and Medication Guide available at http://www.BAVENCIO.com.

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;0:1-31.

2. Digklia A, et al. Advanced gastric cancer: Current treatment landscape and future perspectives. World J Gastroenterol. 2016;22(8):2403-2414.

3. Shi WJ, Gao JB. Molecular mechanisms of chemoresistance in gastric cancer. World J Gastrointest Oncol. 2016;8(9):673-81.

4. Apicella M, et al. Targeted therapies for gastric cancer: failures and hopes from clinical trials. Oncotarget. 2017;8(34):57654-57669.

5. Shah MA. Update on metastatic gastric and esophageal cancers. J Clin Oncol. 2015;33:1760-9.

6. Dolan DE, Gupta S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 2014;21(3):231-237.

7. Dahan R, Sega E, Engelhardt J, et al. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell. 2015;28(3):285-295.

8. Boyerinas B, Jochems C, Fantini M, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res. 2015;3(10):1148-1157.

Attachments

  • Original document
  • Permalink

Disclaimer

Merck KGaA published this content on 08 November 2019 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 08 November 2019 13:44:04 UTC