Ceapro Inc. announced encouraging results from it's completed pre-clinical CHRP study conducted with McMaster University evaluating PGX-processed yeast beta glucan (PGX-YBG) as a potential therapeutic option for individuals suffering from interstitial lung diseases (ILD). The data were presented by Mrs. Safaa Naiel, Ph.D. candidate, in an oral presentation titled, “Reprogramming Rogue Macrophages: Yeast Beta-Glucan Microparticles as a Macrophage Modulator for Lung Fibrosis,” at the American Thoracic Society (ATS) International Conference being held May 19-24, 2023 in Washington, DC. The positive results from the CHRP study, demonstrated PGX-YBG was respirable, and small enough to safely and reliably reprogram macrophages in the lungs of mice, providing confidence in its potential to safely penetrate deep into human lungs when self-administered using a hand-held inhaler.

ILD damages the tissues between the small air sacs in the lungs (alveoli) and the blood vessels around them. This makes it increasingly difficult to breathe, and progressively harder for the oxygen to move out of the lungs and into the blood and tissues where it is needed. ILD represent a significant unmet medical need and is currently putting a major strain on healthcare systems around the globe.

In 2022, a peer-reviewed article published in the journal of BMC Pulmonary Medicine reported that, “globally, the median total direct cost for ILD equates to 51% of a country's GDP per capita and has been increasing over time. One of the most prevalent and lethal ILD is Idiopathic Pulmonary Fibrosis (IPF), an area of significant unmet need. Prior to the pandemic, Ceapro and accomplished researchers from McMaster University teamed up to develop a novel drug formulation for the potential treatment of IPF.

For the study, researchers utilized yeast beta glucan (YBG), a fibre found in the cell walls of baker's yeast cells, which is known to stimulate the body's immune system to react to threats and which is used globally as an immune stimulating natural health supplement. Conventional spray dried YBG is not respirable as it is too large to enter the human lung. In contrast, YBG that is processed using Ceapro's patented PGX technology (PGX-YBG) is highly purified, with a much smaller particle size.

Since PGX-YBG can be uniformly “loaded” with a variety of bioactives, it was originally being investigated as a delivery system for inhaled therapeutics. Through the research collaboration, McMaster researchers found that, not only was PGX-YBG a safe and effective carrier that could deliver therapeutic actives, but that it also possesses the ability to reprogram the body's immune system to prevent fibrogenesis (the development of harmful, fibrotic tissue) on its own. This encouraging result makes PGX-YBG a promising novel active with high potential as a new inhalable immune-therapeutic/-prophylactic treatment for a variety of severe ILD including IPF and COVID-19 related lung fibrosis.