Novoheart announced a collaboration with AstraZeneca, in an effort to develop the world's first human-specific in vitro, functional model of heart failure with preserved ejection fraction (HFpEF), a common condition especially among the elderly and in women, with the reported prevalence approaching 10% in women over the age of 80 years. Heart failure (HF) is a global pandemic with an estimated 64.3 million cases worldwide in 2017, with an increasing trend in prevalence2. The annual global economic burden of HF is estimated at over US$100 billion3.

Accounting for approximately 50% of HF cases, HFpEF in particular is a major and growing public health problem worldwide, with its pathological mechanisms and diverse etiology poorly understood. Due to these complexities, models of the disease available to date, including various animal models, have limited ability to mimic the clinical presentation of HFpEF4. Therefore, drug developers lack an effective tool for preclinical testing of drug candidates for efficacy, and as a result, clinical outcomes for HFpEF have not improved over the last decades, with no effective therapies available.

In collaboration with the Cardiovascular, Renal and Metabolism therapy area of AstraZeneca, the initial phase of the project aims to establish a new in vitro model, leveraging Novoheart's proprietary 3-D human ventricular cardiac organoid chamber (hvCOC) technology, that reproduces key phenotypic characteristics of HFpEF. Also known as “human heart-in-a-jar”, the hvCOC is the only human engineered heart tissue available on the market to date that enables clinically informative assessment of human cardiac pump performance including ejection fraction and developed pressure. Unlike animal models, engineered hvCOCs can be fabricated with specific cellular and matrix compositions, and patient-specific human induced pluripotent stem cells (iPSCs), that allow control over their physical and mechanical properties to mimic those observed in HFpEF patient hearts.

Together with Novoheart's proprietary hardware and software, this aims to provide a unique assay for understanding the mechanisms of HFpEF, identification of new therapeutic targets, and assessment of novel therapeutics for treating HFpEF patients. Novoheart will exclusively own the intellectual property rights to the newly developed HFpEF hvCOC model.