SpineGuard announced a key milestone reached in the development of its robotic application. DSG is based on the local measurement of electrical conductivity of tissues in real time without X-ray imaging, with a sensor located at the tip of the drilling instrument. Its efficacy was proven by more than 85,000 surgeries across the globe and 17 scientific publications. SpineGuard has entered in 2017 a collaboration with the ISIR (Institut des Systèmes Intelligents et de Robotique) lab of Sorbonne University, CNRS and INSERM, for the application of DSG to surgical robots and the enhancement of their safety, accuracy and autonomy. The experiment which results are announced consists in detecting the boundary between bone and soft tissues during a vertebral drilling performed by a robot, and in automatically stopping the drilling as the tip reached this limit. SpineGuard announces best in class results. After having designed an ex vivo validation protocol that does not involve any animal sacrifice (in-vitro lamb vertebrae model from butcher shop), SpineGuard and ISIR conducted two series of experiments. A first 100 series was used to generate the data necessary to fine-tune the breach detection algorithms. A second 100 series allowed to test the efficacy of the real time guidance of a robot thanks to the DSG technology and the resulting algorithm.