Traction Uranium Corp. announced the final analytical results of the winter 2023 diamond drilling program at the Company's Key Lake South Property (the “KLS Property”). The KLS property is located in northern Saskatchewan, approximately 6 kilometres southwest of Cameco's Key Lake Uranium Mill and along the south flank of the Athabasca Basin.

Traction has entered into an option agreement to earn an initial 51% interest in the property from UGreenco Energy Corp, to be increased to 75% following satisfactory completion of further exploration requirements. The anomalous intercepts in hole KLS23-011 are all associated with zones of fracturing or brecciation. These are hosted both within orthogneissic and pegmatitic units, indicating structural control may play a role in mineralization along the south flank of Zimmer Lake.

Analytical results indicate that the majority of basement-hosted elevated gamma ray “counts per second” (cps) originated from anomalous thorium (Th) values. Most holes returned elevated to anomalous values for “Rare Earth Elements” (REEs), typically, although not exclusively, associated with thorium. Table 1 lists the significant intervals of thorium, uranium and select REEs.

Anomalous values for Th and REEs were returned from throughout the drilled area. The northwest property corner near Zimmer Lake, including the collar locations for KLS23-007, KLS23-008 and KLS23-011, may have higher mineral potential. These holes were collared along the previously interpreted contact of granitic orthogneiss to the southeast with basement-hosted metasedimentary rocks to the northwest.

Hole KLS23-007, which returned a 52.80-metre intercept of anomalous basement-hosted cps readings, also returned the longest significant intercept to date, of 52.80m grading 113.99 ppm Th, 4.87 ppm U, 193 ppm neodymium (Nd), 420 ppm cerium (Ce), 54.86 ppm praseodymium (Pr) and 194 ppm lanthanum (La). This long intercept included four sub-intercepts within pegmatitic units, returning grades up to 277.29 ppm Th, 13.57 ppm U, 498.5 ppm Nd, 1,096 (0.11%) Ce, 140.40 ppm Pr and 496 ppm La across 1.17m. At this time, the source and mineralogy of overburden-hosted anomalous CPS values in holes KLS23-007 and KLS23-009 have not been determined.

DDH KLS23-007: down-hole gamma ray probing intersected 2 zones of anomalous radioactivity: Zone 1; 6 metres (1.6 m to 7.6m) within overburden, with values up to 1,254 cps; DDH KLS23-009: downhole probing detected an approximately 69-centimetre interval of anomalous radioactivity within overburden, extending from 0.023 metres to 0.716 metres with values ranging from 121 to 236 cps. An overburden testing program is currently being developed to sample and test the shallow, near surface overburden anomalies at KLS23-007 and KLS23-009. This will be designed to determine the geochemical signature of overburden-hosted mineralization causing the radioactivity detected by down-hole probing.

Also, it has not been determined whether bedrock intercepts throughout the 2023 drilling represent true widths of mineralized zones. Core samples were submitted to the Saskatchewan Research Council (SRC) Geoanalytical Laboratories in Saskatoon. The SRC facility is ISO/IEC 17025:2005 accredited by the Standards Council of Canada (scope of accreditation #537).

The samples are analyzed using partial and total digestion inductively coupled plasma (ICP) methods, for boron by Na2O2 fusion, and for uranium by fluorimetry. Analytical results listed here were determined by total digestion ICP.