Amgen and Arrakis Therapeutics announced a research collaboration focused on the discovery and development of RNA degrader therapeutics against a range of difficult-to-drug targets in multiple therapeutic areas. This new class of "targeted RNA degraders" consists of small molecule drugs that selectively destroy RNAs encoding disease-causing proteins by inducing their proximity to nucleases. Under the terms of the agreement, Arrakis will lead research activities for the identification of RNA-targeted small molecule binders against a broad set of targets nominated by Amgen.

Both parties will collaboratively design and functionalize these molecules to specifically degrade targeted RNAs, and Amgen will lead further preclinical and clinical development activities. Amgen will pay $75 million upfront to Arrakis for five initial programs and will have the option to nominate additional programs. For each program, Arrakis will be eligible for additional payments from Amgen for preclinical, clinical, regulatory and sales milestones, and royalties up to low double digits. Arrakis could potentially receive several billion dollars in future payments if all milestones are met and future program options are exercised.

By integrating the capabilities of the two innovative discovery platforms from Amgen and Arrakis, the collaboration creates an opportunity to design and engineer targeted RNA degraders. Amgen has built its Induced Proximity Platform to identify multispecific molecules that harness the power of cell biology by forming novel connections between natural effectors and targets. One end of the molecule binds to the target to be altered and the other end binds to a cellular effector that acts on the target, offering the potential to engage a broad range of cellular mechanisms to treat disease.

With targeted RNA degraders, the effector, such as a ribonuclease or other RNA modulator, is brought into proximity of the RNA to degrade or otherwise modify the disease-causing RNA of interest. This complements Amgen's existing efforts to target RNA with siRNA. In this collaboration, Arrakis' rSM platform will be applied as a drug discovery engine to identify small molecules that bind target RNA.

These rSMs will then be functionalized with nuclease recruiters to create heterobifunctional molecules that trigger degradation of disease-relevant RNA targets.